1
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Young OM, Xu X, Sarker S, Sochol RD. Direct laser writing-enabled 3D printing strategies for microfluidic applications. LAB ON A CHIP 2024; 24:2371-2396. [PMID: 38576361 PMCID: PMC11060139 DOI: 10.1039/d3lc00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Over the past decade, additive manufacturing-or "three-dimensional (3D) printing"-has attracted increasing attention in the Lab on a Chip community as a pathway to achieve sophisticated system architectures that are difficult or infeasible to fabricate via conventional means. One particularly promising 3D manufacturing technology is "direct laser writing (DLW)", which leverages two-photon (or multi-photon) polymerization (2PP) phenomena to enable high geometric versatility, print speeds, and precision at length scales down to the 100 nm range. Although researchers have demonstrated the potential of using DLW for microfluidic applications ranging from organ on a chip and drug delivery to micro/nanoparticle processing and soft microrobotics, such scenarios present unique challenges for DLW. Specifically, microfluidic systems typically require macro-to-micro fluidic interfaces (e.g., inlet and outlet ports) to facilitate fluidic loading, control, and retrieval operations; however, DLW-based 3D printing relies on a micron-to-submicron-sized 2PP volume element (i.e., "voxel") that is poorly suited for manufacturing these larger-scale fluidic interfaces. In this Tutorial Review, we highlight and discuss the four most prominent strategies that researchers have developed to circumvent this trade-off and realize macro-to-micro interfaces for DLW-enabled microfluidic components and systems. In addition, we consider the possibility that-with the advent of next-generation commercial DLW printers equipped with new dynamic voxel tuning, print field, and laser power capabilities-the overall utility of DLW strategies for Lab on a Chip fields may soon expand dramatically.
Collapse
Affiliation(s)
- Olivia M Young
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, MA, 01003, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
3
|
Venkatesalu S, Dilliyappan S, Satish Kumar A, Palaniyandi T, Baskar G, Ravi M, Sivaji A. Prospectives and retrospectives of microfluidics devices and lab-on-A-chip emphasis on cancer. Clin Chim Acta 2024; 552:117646. [PMID: 38000458 DOI: 10.1016/j.cca.2023.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Microfluidics is a science and technology that deals with the concept of "less sample-to-more precision" enabling portable device development via fabrication for in vitro analysis. On evolution, microfluidic system lead to the development of Organ-on-chip where recapitulation of organ's functionality and pathophysiological response can be performed under controlled environment. Further microfluidic-based "Lab-on-chip" device, a versatile innovation credited for its number of parameters that has capability to leverage next-generation companion of medicines. This emulsion science has enormous practise in the field of regenerative medicine, drug screening, medical diagnosis and therapy for accuracy in results. In this era of personalized medicine, getting precise tools for applying these theranostics is crucial. Oncological theranostics create a new gateway to develop precision in personalized medicine for cancer, where microfluidic chips are involved in diagnosis and therapy of various cancers using biomarkers for thyroid, lung cancers, and assay based for breast, circulating tumor cells and colorectal cancers and nanoparticles for ovarian cancer. This review shows more comprehensive approach to the state of art with respect to microfluidic devices in cancer theranostics.
Collapse
Affiliation(s)
- Sneha Venkatesalu
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Avanthika Satish Kumar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
4
|
Yang S, Xian Q, Liu Y, Zhang Z, Song Q, Gao Y, Wen W. A Silicon-Based PDMS-PEG Copolymer Microfluidic Chip for Real-Time Polymerase Chain Reaction Diagnosis. J Funct Biomater 2023; 14:jfb14040208. [PMID: 37103298 PMCID: PMC10143339 DOI: 10.3390/jfb14040208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Polydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity and excessive gas permeability of PDMS hinder its applications in many fields. This study developed a silicon-based polydimethylsiloxane-polyethylene-glycol (PDMS-PEG) copolymer microfluidic chip, the PDMS-PEG copolymer silicon chip (PPc-Si chip), for biomolecular diagnosis. By adjusting the modifier formula for PDMS, the hydrophilic switch occurred within 15 s after contact with water, resulting in only a 0.8% reduction in transmittance after modification. In addition, we evaluated the transmittance at a wide range of wavelengths from 200 nm to 1000 nm to provide a reference for its optical property study and application in optical-related devices. The improved hydrophilicity was achieved by introducing a large number of hydroxyl groups, which also resulted in excellent bonding strength of PPc-Si chips. The bonding condition was easy to achieve and time-saving. Real-time PCR tests were successfully conducted with higher efficiency and lower non-specific absorption. This chip has a high potential for a wide range of applications in point-of-care tests (POCT) and rapid disease diagnosis.
Collapse
Affiliation(s)
- Siyu Yang
- Division of Emerging Interdisciplinary Areas, Interdisciplinary Program Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, China
| | - Qingyue Xian
- Division of Emerging Interdisciplinary Areas, Interdisciplinary Program Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yiteng Liu
- Division of Emerging Interdisciplinary Areas, Interdisciplinary Program Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Ziyi Zhang
- Division of Emerging Interdisciplinary Areas, Interdisciplinary Program Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Qi Song
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yibo Gao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Weijia Wen
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, China
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
Cao UMN, Zhang Y, Chen J, Sayson D, Pillai S, Tran SD. Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication. Int J Mol Sci 2023; 24:3232. [PMID: 36834645 PMCID: PMC9966054 DOI: 10.3390/ijms24043232] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Organ-on-A-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
6
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Mohd Razali NA, Lin WC, Norzain NA, Yu ZW. Controlling cell elongation and orientation by using microstructural nanofibre scaffolds for accelerating tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112321. [PMID: 34474872 DOI: 10.1016/j.msec.2021.112321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/10/2021] [Indexed: 11/25/2022]
Abstract
The topographic surface conditions of scaffolds can regulate cellular behaviours, such as by stimulating cellular migration and morphological changes to wound sites and have the potential to promote tissue regeneration. In this research, four types of engineered topographic surfaces, including arrays of hemisphere, pyramid, semi-cylinder, and triangle prism microstructures, were patterned on silicon moulds using microfabrication processes. The microstructural patterns were transferred onto the surface of polycaprolactone membranes and nanofibrous scaffolds by combining with the moulding approach and electrospinning technique, respectively. In vitro experimental results demonstrated that the triangular microstructural nanofibre provided a strong guiding performance to the filopodia of cultured C2C12 myoblast cells, thus inducing cellular elongation and alignment in the longitudinal direction and forming an elongated cell morphology. The cultured cells rapidly transitioned into an elongated morphology at an aspect ratio of 17.33 after 24 h of incubation, with 70% of the cell elongates aligning with the direction of triangular microstructural patterns. The cells cultured on the triangular microstructural nanofibre elongated four-fold compared with those in the flat nanofibre scaffold. Moreover, an in vivo study showed that wounds treated with the triangular microstructural nanofibre scaffold achieved 95.04% wound closure after 14 days and completed the reepithelialisation with an ordered collagen arrangement. Therefore, we believe that the engineered triangular nanofibrous scaffold may accelerate tissue regeneration and has potential for wound healing applications.
Collapse
Affiliation(s)
- Nur Adila Mohd Razali
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wei-Chih Lin
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Norul Ashikin Norzain
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Zhi-Wei Yu
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
8
|
Mestres G, Carter SSD, Hailer NP, Diez-Escudero A. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials. Acta Biomater 2021; 130:115-137. [PMID: 34087437 DOI: 10.1016/j.actbio.2021.05.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Biomaterials offer a promising approach to repair bone defects. Whereas traditional studies predominantly focused on optimizing the osteogenic capacity of biomaterials, less focus has been on the immune response elicited by them. However, the immune and skeletal systems extensively interact, a concept which is referred to as 'osteoimmunology'. This realization has fuelled the development of biomaterials with favourable osteoimmunomodulatory (OIM) properties, aiming to modulate the immune response and to support bone regeneration, thereby affecting the success of an implant. Given the plethora of in vitro assays used to evaluate the OIM properties of biomaterials, it may be challenging to select the right methods to produce conclusive results. In this review, we aim to provide a comprehensive and practical guide for researchers interested in studying the OIM properties of biomaterials in vitro. After a concise overview of the concept of osteoimmunology, emphasis is put on the methodologies that are regularly used to evaluate the OIM properties of biomaterials. First, a description of the most commonly used cell types and cell culture media is provided. Second, typical experimental set-ups and their relevant characteristics are discussed. Third, a detailed overview of the generally used methodologies and readouts, including cell type-specific markers and time points of analysis, is given. Finally, we highlight the promise of advanced approaches, namely microarrays, bioreactors and microfluidic-based systems, and the potential that these may offer to the osteoimmunology field. STATEMENT OF SIGNIFICANCE: Osteoimmunology focuses on the connection and communication between the skeletal and immune systems. This interaction has been recognized to play an important role in the clinical success of biomaterials, which has resulted in an increasing amount of research on the osteoimmunomodulatory (OIM) properties of biomaterials. However, the amount of literature makes it challenging to extract the information needed to design experiments from beginning to end, and to compare obtained results to existing work. This article intends to serve as a guide for those aiming to learn more about the commonly used experimental approaches in the field. We cover early-stage choices, such as cell types and experimental set-ups, but also discuss specific assays, including cell markers and time points of analysis.
Collapse
Affiliation(s)
- Gemma Mestres
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden.
| | - Sarah-Sophia D Carter
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Nils P Hailer
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Diez-Escudero
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
9
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
10
|
Ahmed HMMAM, Moreira Teixeira LS. New Endeavors of (Micro)Tissue Engineering: Cells Tissues Organs on-Chip and Communication Thereof. Cells Tissues Organs 2021; 211:721-735. [PMID: 34198305 DOI: 10.1159/000516356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/30/2021] [Indexed: 01/25/2023] Open
Abstract
The development of new therapies is tremendously hampered by the insufficient availability of human model systems suitable for preclinical research on disease target identification, drug efficacy, and toxicity. Thus, drug failures in clinical trials are too common and too costly. Animal models or standard 2D in vitro tissue cultures, regardless of whether they are human based, are regularly not representative of specific human responses. Approaching near human tissues and organs test systems is the key goal of organs-on-chips (OoC) technology. This technology is currently showing its potential to reduce both drug development costs and time-to-market, while critically lessening animal testing. OoC are based on human (stem) cells, potentially derived from healthy or disease-affected patients, thereby amenable to personalized therapy development. It is noteworthy that the OoC market potential goes beyond pharma, with the possibility to test cosmetics, food additives, or environmental contaminants. This (micro)tissue engineering-based technology is highly multidisciplinary, combining fields such as (developmental) biology, (bio)materials, microfluidics, sensors, and imaging. The enormous potential of OoC is currently facing an exciting new challenge: emulating cross-communication between tissues and organs, to simulate more complex systemic responses, such as in cancer, or restricted to confined environments, as occurs in osteoarthritis. This review describes key examples of multiorgan/tissue-on-chip approaches, or linked organs/tissues-on-chip, focusing on challenges and promising new avenues of this advanced model system. Additionally, major emphasis is given to the translation of established tissue engineering approaches, bottom up and top down, towards the development of more complex, robust, and representative (multi)organ/tissue-on-chip approaches.
Collapse
Affiliation(s)
- Haysam M M A M Ahmed
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands,
| | - Liliana S Moreira Teixeira
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
In situ photografting during direct laser writing in thermoplastic microchannels. Sci Rep 2021; 11:10980. [PMID: 34040116 PMCID: PMC8155204 DOI: 10.1038/s41598-021-90571-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
A method for in situ photografting during direct laser writing by two-photon polymerization is presented. The technique serves as a powerful approach to the formation of covalent bonds between 3D photoresist structures and thermoplastic surfaces. By leveraging the same laser for both pattern generation and localized surface reactions, crosslinking between the bulk photoresist and thermoplastic surface is achieved during polymerization. When applied to in-channel direct laser writing for microfluidic device fabrication, the process yields exceptionally strong adhesion and robust bond interfaces that can withstand pressure gradients as high as 7 MPa through proper channel design, photoinitiator selection, and processing conditions.
Collapse
|
12
|
Buchegger B, Tanzer A, Posch S, Gabriel C, Klar TA, Jacak J. STED lithography in microfluidics for 3D thrombocyte aggregation testing. J Nanobiotechnology 2021; 19:23. [PMID: 33461577 PMCID: PMC7814651 DOI: 10.1186/s12951-020-00762-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/24/2020] [Indexed: 11/10/2022] Open
Abstract
Three-dimensional photopolymerization techniques such as multiphoton polymerization lithography (MPL) and stimulated emission depletion (STED) lithography are powerful tools for fabricating structures in the sub-µm range. Combining these techniques with microfluidics enables us to broaden the range of their applications. In this study, we show a microfluidic device enhanced with MPL structures carrying STED-lithographically written nanoanchors that promote binding of the von Willebrand factor (vWF). The density of vWF is adjusted by varying the number of the nanoanchors on the 3D structures. This allows us to study the impact of the density of vWF on the activation of thrombocytes. The activation of the thrombocytes seems to decrease with the density of vWF on the 3D scaffolds inside the microfluidic channels.
Collapse
Affiliation(s)
- Bianca Buchegger
- Institute of Applied Physics and Linz Institute of Technology (LIT), Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria
- University of Applied Sciences, Upper Austria School of Medical Engineering and Applied Social Sciences, Garnisonstraße 21, 4020, Linz, Austria
| | - Alexander Tanzer
- Institute of Applied Physics and Linz Institute of Technology (LIT), Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria
| | - Sandra Posch
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020, Linz, Austria
| | - Christian Gabriel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - Thomas A Klar
- Institute of Applied Physics and Linz Institute of Technology (LIT), Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria
| | - Jaroslaw Jacak
- University of Applied Sciences, Upper Austria School of Medical Engineering and Applied Social Sciences, Garnisonstraße 21, 4020, Linz, Austria.
| |
Collapse
|
13
|
Vermeulen S, de Boer J. Screening as a strategy to drive regenerative medicine research. Methods 2020; 190:80-95. [PMID: 32278807 DOI: 10.1016/j.ymeth.2020.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
In the field of regenerative medicine, optimization of the parameters leading to a desirable outcome remains a huge challenge. Examples include protocols for the guided differentiation of pluripotent cells towards specialized and functional cell types, phenotypic maintenance of primary cells in cell culture, or engineering of materials for improved tissue interaction with medical implants. This challenge originates from the enormous design space for biomaterials, chemical and biochemical compounds, and incomplete knowledge of the guiding biological principles. To tackle this challenge, high-throughput platforms allow screening of multiple perturbations in one experimental setup. In this review, we provide an overview of screening platforms that are used in regenerative medicine. We discuss their fabrication techniques, and in silico tools to analyze the extensive data sets typically generated by these platforms.
Collapse
Affiliation(s)
- Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, the Netherlands; BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands
| | - Jan de Boer
- BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands.
| |
Collapse
|
14
|
Carter SSD, Barbe L, Tenje M, Mestres G. Exploring microfluidics as a tool to evaluate the biological properties of a titanium alloy under dynamic conditions. Biomater Sci 2020; 8:6309-6321. [DOI: 10.1039/d0bm00964d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
When evaluating the biological properties of titanium under dynamic conditions, cell proliferation was shown to be dominant over cell differentiation.
Collapse
Affiliation(s)
- Sarah-Sophia D. Carter
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| | - Laurent Barbe
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| | - Maria Tenje
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| | - Gemma Mestres
- Division of Microsystems Technology
- Department of Materials Science and Engineering
- Science for Life Laboratory
- Uppsala University
- 751 22 Uppsala
| |
Collapse
|
15
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
16
|
Karayannis P, Petrakli F, Gkika A, Koumoulos EP. 3D-Printed Lab-on-a-Chip Diagnostic Systems-Developing a Safe-by-Design Manufacturing Approach. MICROMACHINES 2019; 10:E825. [PMID: 31795128 PMCID: PMC6969929 DOI: 10.3390/mi10120825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.
Collapse
Affiliation(s)
| | | | | | - Elias P. Koumoulos
- Innovation in Research & Engineering Solutions (IRES), Boulevard Edmond Machtens 79/22, 1080 Brussels, Belgium; (P.K.); (F.P.); (A.G.)
| |
Collapse
|
17
|
Nouri-Goushki M, Sharma A, Sasso L, Zhang S, Van der Eerden BCJ, Staufer U, Fratila-Apachitei LE, Zadpoor AA. Submicron Patterns-on-a-Chip: Fabrication of a Microfluidic Device Incorporating 3D Printed Surface Ornaments. ACS Biomater Sci Eng 2019; 5:6127-6136. [DOI: 10.1021/acsbiomaterials.9b01155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mahdiyeh Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Abhishek Sharma
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Luigi Sasso
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Shuang Zhang
- Department of Internal Medicine, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Bram C. J. Van der Eerden
- Department of Internal Medicine, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Urs Staufer
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
18
|
Alsharhan AT, Acevedo R, Warren R, Sochol RD. 3D microfluidics via cyclic olefin polymer-based in situ direct laser writing. LAB ON A CHIP 2019; 19:2799-2810. [PMID: 31334525 DOI: 10.1039/c9lc00542k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In situ direct laser writing (isDLW) strategies that facilitate the printing of three-dimensional (3D) nanostructured components directly inside of, and fully sealed to, enclosed microchannels are uniquely suited for manufacturing geometrically complex microfluidic technologies. Recent efforts have demonstrated the benefits of using micromolding and bonding protocols for isDLW; however, the reliance on polydimethylsiloxane (PDMS) leads to limited fluidic sealing (e.g., operational pressures <50-75 kPa) and poor compatibility with standard organic solvent-based developers. To bypass these issues, here we explore the use of cyclic olefin polymer (COP) as an enabling microchannel material for isDLW by investigating three fundamental classes of microfluidic systems corresponding to increasing degrees of sophistication: (i) "2.5D" functionally static fluidic barriers (10-100 μm in height), which supported uncompromised structure-to-channel sealing under applied input pressures of up to 500 kPa; (ii) 3D static interwoven microvessel-inspired structures (inner diameters < 10 μm) that exhibited effective isolation of distinct fluorescently labelled microfluidic flow streams; and (iii) 3D dynamically actuated microfluidic transistors, which comprised bellowed sealing elements (wall thickness = 500 nm) that could be actively deformed via an applied gate pressure to fully obstruct source-to-drain fluid flow. In combination, these results suggest that COP-based isDLW offers a promising pathway to wide-ranging fluidic applications that demand significant architectural versatility at submicron scales with invariable sealing integrity, such as for biomimetic organ-on-a-chip systems and integrated microfluidic circuits.
Collapse
Affiliation(s)
- Abdullah T Alsharhan
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ruben Acevedo
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Roseanne Warren
- Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA and Robert E. Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD 20742, USA and Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Mestres G, Perez RA, D’Elía NL, Barbe L. Advantages of microfluidic systems for studying cell-biomaterial interactions—focus on bone regeneration applications. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
|
21
|
Lamont AC, Alsharhan AT, Sochol RD. Geometric Determinants of In-Situ Direct Laser Writing. Sci Rep 2019; 9:394. [PMID: 30674934 PMCID: PMC6344532 DOI: 10.1038/s41598-018-36727-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Direct laser writing (DLW) is a three-dimensional (3D) manufacturing technology that offers significant geometric versatility at submicron length scales. Although these characteristics hold promise for fields including organ modeling and microfluidic processing, difficulties associated with facilitating the macro-to-micro interfaces required for fluid delivery have limited the utility of DLW for such applications. To overcome this issue, here we report an in-situ DLW (isDLW) strategy for creating 3D nanostructured features directly inside of—and notably, fully sealed to—sol-gel-coated elastomeric microchannels. In particular, we investigate the role of microchannel geometry (e.g., cross-sectional shape and size) in the sealing performance of isDLW-printed structures. Experiments revealed that increasing the outward tapering of microchannel sidewalls improved fluidic sealing integrity for channel heights ranging from 10 μm to 100 μm, which suggests that conventional microchannel fabrication approaches are poorly suited for isDLW. As a demonstrative example, we employed isDLW to 3D print a microfluidic helical coil spring diode and observed improved flow rectification performance at higher pressures—an indication of effective structure-to-channel sealing. We envision that the ability to readily integrate 3D nanostructured fluidic motifs with the entire luminal surface of elastomeric channels will open new avenues for emerging applications in areas such as soft microrobotics and biofluidic microsystems.
Collapse
Affiliation(s)
- Andrew C Lamont
- Department of Mechanical Engineering, 2147 Glenn L. Martin Hall, University of Maryland, College Park, MD, 20740, USA.,Fischell Department of Bioengineering, 2147 Glenn L. Martin Hall, University of Maryland, College Park, MD, 20740, USA
| | - Abdullah T Alsharhan
- Department of Mechanical Engineering, 2147 Glenn L. Martin Hall, University of Maryland, College Park, MD, 20740, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, 2147 Glenn L. Martin Hall, University of Maryland, College Park, MD, 20740, USA. .,Fischell Department of Bioengineering, 2147 Glenn L. Martin Hall, University of Maryland, College Park, MD, 20740, USA.
| |
Collapse
|