1
|
Matthiesen I, Voulgaris D, Nikolakopoulou P, Winkler TE, Herland A. Continuous Monitoring Reveals Protective Effects of N-Acetylcysteine Amide on an Isogenic Microphysiological Model of the Neurovascular Unit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101785. [PMID: 34174140 DOI: 10.1002/smll.202101785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Indexed: 05/20/2023]
Abstract
Microphysiological systems mimic the in vivo cellular ensemble and microenvironment with the goal of providing more human-like models for biopharmaceutical research. In this study, the first such model of the blood-brain barrier (BBB-on-chip) featuring both isogenic human induced pluripotent stem cell (hiPSC)-derived cells and continuous barrier integrity monitoring with <2 min temporal resolution is reported. Its capabilities are showcased in the first microphysiological study of nitrosative stress and antioxidant prophylaxis. Relying on off-stoichiometry thiol-ene-epoxy (OSTE+) for fabrication greatly facilitates assembly and sensor integration compared to the prevalent polydimethylsiloxane devices. The integrated cell-substrate endothelial resistance monitoring allows for capturing the formation and breakdown of the BBB model, which consists of cocultured hiPSC-derived endothelial-like and astrocyte-like cells. Clear cellular disruption is observed when exposing the BBB-on-chip to the nitrosative stressor linsidomine, and the barrier permeability and barrier-protective effects of the antioxidant N-acetylcysteine amide are reported. Using metabolomic network analysis reveals further drug-induced changes consistent with prior literature regarding, e.g., cysteine and glutathione involvement. A model like this opens new possibilities for drug screening studies and personalized medicine, relying solely on isogenic human-derived cells and providing high-resolution temporal readouts that can help in pharmacodynamic studies.
Collapse
Affiliation(s)
- Isabelle Matthiesen
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Dimitrios Voulgaris
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Polyxeni Nikolakopoulou
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Thomas E Winkler
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| |
Collapse
|