1
|
Sergio I, Varricchio C, Squillante F, Cantale Aeo NM, Campese AF, Felli MP. Notch Inhibitors and BH3 Mimetics in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:12839. [PMID: 39684550 DOI: 10.3390/ijms252312839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with poor response to conventional therapy, derived from hematopoietic progenitors committed to T-cell lineage. Relapsed/Refractory patients account for nearly 20% of childhood and 45% of adult cases. Aberrant Notch signaling plays a critical role in T-ALL pathogenesis and therapy resistance. Notch inhibition is a promising therapeutic target for personalized medicine, and a variety of strategies to prevent Notch activation, including γ-secretase (GS) inhibitors (GSIs) and antibodies neutralizing Notch receptors or ligands, have been developed. Disruption of apoptosis is pivotal in cancer development and progression. Different reports evidenced the interplay between Notch and the anti-apoptotic Bcl-2 family proteins in T-ALL. Although based on early research data, this review discusses recent advances in directly targeting Notch receptors and the use of validated BH3 mimetics for the treatment of T-ALL and their combined action in light of current evidence of their use.
Collapse
Affiliation(s)
- Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Squillante
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
2
|
Saleh T, Naffa R, Barakat NA, Ismail MA, Alotaibi MR, Alsalem M. Cisplatin Provokes Peripheral Nociception and Neuronal Features of Therapy-Induced Senescence and Calcium Dysregulation in Rats. Neurotox Res 2024; 42:10. [PMID: 38294571 DOI: 10.1007/s12640-024-00690-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-β-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Randa Naffa
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Noor A Barakat
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad A Ismail
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
- Adelaide Medical School, South Australian ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
3
|
Guan T, Zheng Y, Jin S, Wang S, Hu M, Liu X, Huang S, Liu Y. Troxerutin alleviates kidney injury in rats via PI3K/AKT pathway by enhancing MAP4 expression. FOOD & NUTRITION RESEARCH 2022; 66:8469. [PMID: 35844954 PMCID: PMC9252313 DOI: 10.29219/fnr.v66.8469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Background Troxerutin is a flavonoid compound and possesses potential anti-cancer, antioxidant, and anti-inflammatory activities. Besides, cisplatin is one of the most widely used therapeutic agents, but the clinical uses of cisplatin are often associated with multiple side effects, among which nephrotoxicity is more common. Objective and design This study explored the protective effects of troxerutin (150 mg kg−1 day−1 for 14 days) against cisplatin-induced kidney injury and the potential mechanism using Wistar rats as an experimental mammalian model. Results We discovered that troxerutin could significantly alleviate cisplatin-induced renal dysfunction, such as increased levels of blood urea nitrogen and creatinine (P < 0.01), as well as improved abnormal renal tissue microstructure and ultrastructure. Additionally, troxerutin significantly decreased malondialdehyde (MDA), hydrogen peroxide (H2O2), NO, inducible nitric oxide synthase (iNOS) levels (P < 0.01), p-NF-κB p65/NF-κB p65, TNF-α, Pro-IL-1β, IL-6, B cell lymphoma-2 (Bcl-2)/Bcl-xl associated death promoter (Bad), Cytochrome C (Cyt C), Cleaved-caspase 9, Cleaved-caspase 3, and Cleaved-caspase 8 protein levels (P < 0.01) in the kidney tissues of cisplatin-treated rats; and increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) activities (P < 0.01), IL-10, Bcl-2 protein levels (P < 0.01). Conclusion These results suggested that the underlying mechanism might be attributed to the regulation of Phosphoinositide 3 kinase/Protein kinase B (PI3K/AKT) pathway via enhancing MAP4 expression to attenuate cellular apoptosis, alleviating oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Tongxu Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin, P. R. China
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Mengxin Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Siqi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
- Yun Liu, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
4
|
Pharmacogenomics of Pediatric Cardiac Arrest: Cisplatin Treatment Worsened by a Ryanodine Receptor 2 Gene Mutation. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In thelast few decades, the roles of cardio-oncology and cardiovascular geneticsgained more and more attention in research and daily clinical practice, shaping a new clinical approach and management of patients affected by cancer and cardiovascular disease. Genetic characterization of patients undergoing cancer treatment can support a better cardiovascular risk stratification beyond the typical risk factors, suchas contractile function and QT interval duration, uncovering a possible patient’s concealed predisposition to heart failure, life threatening arrhythmias and sudden death. Specifically, an integrated cardiogenetic approach in daily oncological clinical practice can ensure the best patient-centered healthcare model, suggesting, also the adequate cardiac monitoring timing and alternative cancer treatments, reducing drug-related complications. We report the case of a 14-month-old girl affected by neuroblastoma, treated by cisplatin, complicated by cardiac arrest. We described the genetic characterization of a Ryanodine receptor 2 (RYR2) gene mutation and subsequent pharmacogenomic approach to better shape the cancer treatment.
Collapse
|
5
|
Pagliaro L, Marchesini M, Roti G. Targeting oncogenic Notch signaling with SERCA inhibitors. J Hematol Oncol 2021; 14:8. [PMID: 33407740 PMCID: PMC7789735 DOI: 10.1186/s13045-020-01015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
6
|
Marchesini M, Gherli A, Montanaro A, Patrizi L, Sorrentino C, Pagliaro L, Rompietti C, Kitara S, Heit S, Olesen CE, Møller JV, Savi M, Bocchi L, Vilella R, Rizzi F, Baglione M, Rastelli G, Loiacono C, La Starza R, Mecucci C, Stegmaier K, Aversa F, Stilli D, Lund Winther AM, Sportoletti P, Bublitz M, Dalby-Brown W, Roti G. Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia. Cell Chem Biol 2020; 27:678-697.e13. [PMID: 32386594 PMCID: PMC7305996 DOI: 10.1016/j.chembiol.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, SCID
- Molecular Structure
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matteo Marchesini
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Andrea Gherli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Anna Montanaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Laura Patrizi
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Claudia Sorrentino
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Luca Pagliaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Chiara Rompietti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Sabine Heit
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | - Claus E Olesen
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Jesper V Møller
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Monia Savi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Leonardo Bocchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Rocchina Vilella
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Federica Rizzi
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy; INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Marilena Baglione
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Giorgia Rastelli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Caterina Loiacono
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Roberta La Starza
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Cristina Mecucci
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute, Cambridge, MA 02142, USA
| | - Franco Aversa
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Donatella Stilli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | | | - Paolo Sportoletti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Maike Bublitz
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | | | - Giovanni Roti
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy.
| |
Collapse
|
7
|
Tadini-Buoninsegni F, Palchetti I. Label-Free Bioelectrochemical Methods for Evaluation of Anticancer Drug Effects at a Molecular Level. SENSORS 2020; 20:s20071812. [PMID: 32218227 PMCID: PMC7181070 DOI: 10.3390/s20071812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
Cancer is a multifactorial family of diseases that is still a leading cause of death worldwide. More than 100 different types of cancer affecting over 60 human organs are known. Chemotherapy plays a central role for treating cancer. The development of new anticancer drugs or new uses for existing drugs is an exciting and increasing research area. This is particularly important since drug resistance and side effects can limit the efficacy of the chemotherapy. Thus, there is a need for multiplexed, cost-effective, rapid, and novel screening methods that can help to elucidate the mechanism of the action of anticancer drugs and the identification of novel drug candidates. This review focuses on different label-free bioelectrochemical approaches, in particular, impedance-based methods, the solid supported membranes technique, and the DNA-based electrochemical sensor, that can be used to evaluate the effects of anticancer drugs on nucleic acids, membrane transporters, and living cells. Some relevant examples of anticancer drug interactions are presented which demonstrate the usefulness of such methods for the characterization of the mechanism of action of anticancer drugs that are targeted against various biomolecules.
Collapse
Affiliation(s)
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Abstract
Here, we present a protocol for the functional characterization of the H+-coupled human peptide transporter PepT1 and sufficient notes to transfer the protocol to the Na+-coupled sugar transporter SGLT1, the organic cation transporter OCT2, the Na+/Ca2+ exchanger NCX, and the neuronal glutamate transporter EAAT3.The assay was developed for the commercially available SURFE2R N1 instrument (Nanion Technologies GmbH) which applies solid supported membrane (SSM)-based electrophysiology. This technique is widely used for the functional characterization of membrane transporters with more than 100 different transporters characterized so far. The technique is cost-effective, easy to use, and capable of high-throughput measurements.SSM-based electrophysiology utilizes SSM-coated gold sensors to physically adsorb membrane vesicles containing the protein of interest. A fast solution exchange provides the substrate and activates transport. For the measurement of PepT1 activity, we applied a peptide concentration jump to activate H+/peptide symport. Proton influx charges the sensor. A capacitive current is measured reflecting the transport activity of PepT1 . Multiple measurements on the same sensor allow for comparison of transport activity under different conditions. Here, we determine EC50 for PepT1-mediated glycylglycine transport and perform an inhibition experiment using the specific peptide inhibitor Lys[Z(NO2)]-Val.
Collapse
|
9
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
10
|
Han Y, Guo W, Zheng W, Luo Q, Wu K, Zhao Y, Wang F. Mass spectrometric quantification of the binding ratio of metal-based anticancer complexes with protein thiols. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:951-958. [PMID: 30812058 DOI: 10.1002/rcm.8423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE The binding ratio of metal complexes with cysteinyl thiols in proteins plays an important role in deciphering the mechanisms of action of therapeutic metal complexes, but its analysis is still a significant challenge. In this work, a quantitative mass spectrometry method is developed to determine the binding ratio of metal-based anticancer complexes with cysteines in human copper chaperone protein Atox1. METHODS A novel strategy based on a thiol-specific stable isotopic labelling reagent was developed to determine the binding ratio of metal-based anticancer complexes, namely cisplatin and organometallic ruthenium complex [(η6 -biphenyl)RuCl(en)]PF6 (en = ethylenediamine), with the cysteinyl residues of Atox1. RESULTS Both cisplatin and the ruthenium complex were reactive not only to Cys15 and/or Cys18, the copper(I) binding site of Atox1, but also to Cys44. The binding ratios of the ruthenium complex with the cysteinyl residues were much higher than those of cisplatin. However, the addition of copper(I) could markedly increase the binding ratios of cysteinyl residues of Atox1 with cisplatin, but not with the ruthenium complex. CONCLUSIONS This strategy can not only precisely determine the binding ratios of metal complexes to protein thiols, but also be helpful in distinguishing thiol-binding sites from other binding sites of metal complexes in proteins. We expect wide application of this method to the research of covalent/coordinative interactions between metal complexes and protein thiols.
Collapse
Affiliation(s)
- Yumiao Han
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Research/Education Centre for Excellence in Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Guo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Research/Education Centre for Excellence in Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Research/Education Centre for Excellence in Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Research/Education Centre for Excellence in Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Research/Education Centre for Excellence in Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Research/Education Centre for Excellence in Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Research/Education Centre for Excellence in Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Mohamadi Yarijani Z, Godini A, Madani SH, Najafi H. Reduction of cisplatin-induced renal and hepatic side effects in rat through antioxidative and anti-inflammatory properties of Malva sylvestris L. extract. Biomed Pharmacother 2018; 106:1767-1774. [PMID: 30119252 DOI: 10.1016/j.biopha.2018.07.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cisplatin is widely used in the chemotherapy of solid organ cancers. However, its application is associated with serious side effects in various organs including the kidneys and liver. OBJECTIVES The aim of this study was to investigate the effects of mallow extract on the side effects of cisplatin in the kidneys and liver. METHODS Hydroalcoholic extract of mallow, at doses of 200, 400, and 600 mg/kg BW, was administered to the animals for seven days intraperitoneally (ip). Animals in the Cis + Mallow group received a dose of cisplatin (8 mg/kg, ip) on the third day. Renal and hepatic functional disturbances were evaluated by measuring concentrations of creatinine, urea-nitrogen, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the plasma. In order to assess oxidative stress, malondialdehyde (MDA) and ferric reducing antioxidant power (FRAP) levels were measured in the kidney tissue. Then, degree of mRNA expressions of TNF-α and ICAM-1 were measured to examine renal inflammation. Hematoxylin and Eosin (H & E) staining of kidney and liver tissues was performed to study tissue damage and leukocyte infiltration. RESULTS Cisplatin increased levels of plasma creatinine, urea-nitrogen, AST, and ALT; levels of tissue damage and leukocytes infiltration in the kidneys and liver; and MDA level and expression of pro-inflammatory factors in the kidney tissue. Meanwhile, it decreased FRAP level in the kidney tissue. Pretreatment by mallow extract resulted in significant improvement in all measured variables although 200-mg and 400-mg doses yielded better results. CONCLUSION Results showed that mallow supplement protects the kidneys and liver against side effects of cisplatin, and reduces the resultant oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Aliashraf Godini
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamid Madani
- Department of Pathology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Du J, Wei Y, Zhao Y, Xu F, Wang Y, Zheng W, Luo Q, Wang M, Wang F. A Photoactive Platinum(IV) Anticancer Complex Inhibits Thioredoxin-Thioredoxin Reductase System Activity by Induced Oxidization of the Protein. Inorg Chem 2018; 57:5575-5584. [PMID: 29688719 DOI: 10.1021/acs.inorgchem.8b00529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thioredoxin (Trx) is an important enzyme in the redox signaling pathway and is usually overexpressed in tumor cells. We demonstrate herein that the photoactive platinum(IV) anticancer complex trans,trans,trans-[Pt(N3)2(OH)2(Py)2] (1) can bind to His, Glu, and Gln residues of Trx upon the irradiation of blue light. More importantly, complex 1 can also induce the oxidation of Met, Trp, and the Cys catalytic sites to form disulfide bonds by generating reactive oxygen species (ROS) upon photoactivation. These eventually lead to inhibition of activity of Trx enzyme and the Trx system and further increase in the cellular ROS level. We speculate that the oxidative damage not only inhibits Trx activity but also greatly contributes to the anticancer action of complex 1.
Collapse
Affiliation(s)
- Jun Du
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials , Anhui Normal University , Wuhu 241000 , People's Republic of China
| | - Yuanyuan Wei
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials , Anhui Normal University , Wuhu 241000 , People's Republic of China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Fengmin Xu
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials , Anhui Normal University , Wuhu 241000 , People's Republic of China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Yuanyuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
13
|
Tadini-Buoninsegni F, Smeazzetto S, Gualdani R, Moncelli MR. Drug Interactions With the Ca 2+-ATPase From Sarco(Endo)Plasmic Reticulum (SERCA). Front Mol Biosci 2018; 5:36. [PMID: 29696147 PMCID: PMC5904271 DOI: 10.3389/fmolb.2018.00036] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is an intracellular membrane transporter that utilizes the free energy provided by ATP hydrolysis for active transport of Ca2+ ions from the cytoplasm to the lumen of sarco(endo)plasmic reticulum. SERCA plays a fundamental role for cell calcium homeostasis and signaling in muscle cells and also in cells of other tissues. Because of its prominent role in many physiological processes, SERCA dysfunction is associated to diseases displaying various degrees of severity. SERCA transport activity can be inhibited by a variety of compounds with different chemical structures. Specific SERCA inhibitors were identified which have been instrumental in studies of the SERCA catalytic and transport mechanism. It has been proposed that SERCA inhibition may represent a novel therapeutic strategy to cure certain diseases by targeting SERCA activity in pathogens, parasites and cancer cells. Recently, novel small molecules have been developed that are able to stimulate SERCA activity. Such SERCA activators may also offer an innovative and promising therapeutic approach to treat diseases, such as heart failure, diabetes and metabolic disorders. In the present review the effects of pharmacologically relevant compounds on SERCA transport activity are presented. In particular, we will discuss the interaction of SERCA with specific inhibitors and activators that are potential therapeutic agents for different diseases.
Collapse
Affiliation(s)
| | - Serena Smeazzetto
- Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Maria Rosa Moncelli
- Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy
| |
Collapse
|