1
|
Brooks J, Everett J, Sadler PJ, Telling N, Collingwood JF. On the origin of metal species in the human brain: a perspective on key physicochemical properties. Metallomics 2025; 17:mfaf004. [PMID: 39924175 PMCID: PMC11890113 DOI: 10.1093/mtomcs/mfaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Normal functioning of the human brain is dependent on adequate regulation of essential metal nutrients. However, it is also highly sensitive to metal-mediated toxicity, linked to various neurodegenerative disorders. Exposure to environmental metal sources (especially to particulate air pollution) can stimulate toxicity and neuropathologic effects, which is particularly evident in populations chronically exposed to high levels of air pollution. Identifying the sources of metal-rich deposits in the human brain is important in not only distinguishing the effects of environmentally acquired metals from endogenous metal dysregulation, but also for tracing pollutant sources which may be subject to exposure control. This perspective reviews evidence for key physicochemical properties (size/morphology, chemical composition, oxidation state, magnetic properties, and isotopic composition) concerning their capacity to distinguish sources of metals in the brain. The scope for combining analytical techniques to study properties in tandem is also discussed.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - James Everett
- School of Engineering, University of Warwick, Coventry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | | |
Collapse
|
2
|
Rodiouchkina K, Rodushkin I, Goderis S, Vanhaecke F. Longitudinal isotope ratio variations in human hair and nails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152059. [PMID: 34863743 DOI: 10.1016/j.scitotenv.2021.152059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Due to the straightforward and non-invasive sampling, ease of transport and long-term storage and access to time-resolved information, determination of element concentrations and isotope ratios in hair and nails finds increasing use. Multi-isotopic information preserved in keratinous tissues allows one to reveal dietary, physiological and environmental influences, but progress in this area is still limited by complicated and time-consuming analytical procedures and challenges in accuracy assessment. In this study, longitudinal distributions of δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, δ65Cu, δ26Mg, and δ114Cd were obtained for hair and nails collected from nine subjects with different age, biological sex, diet and/or place of residence. For S and Zn, the distribution along hair strands revealed a trend towards a heavier isotopic signature from the proximal to the distal end, with a maximum difference within the hair of a single subject of 1.2‰ (Δ34S) and 0.4‰ (Δ66Zn). For Fe, Cu, Mg and Cd, a shift towards either a lighter (Cu) or heavier (Fe, Mg and Cd) isotopic composition is accompanied by increasing concentration towards the distal hair end, indicating possible isotope fractionation during deposition or external contamination with a different isotopic composition. Pb and Sr isotope ratios are relatively stable throughout the hair strands despite notable concentration increases towards the distal end, likely reflecting external contamination. The isotopic composition of Sr points to tap water as a probable main source, explaining the relative stability of the ratio for individuals from the same geographical location. For Pb, isotopic compositions suggest tap water and/or indoor dust as possible sources. Similar δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, and δ65Cu observed for hair, fingernails and toenails sampled from the same individual suggest that keratinous tissues are conservative receivers of internal and external inputs and can be used complementary. Seasonal variation in δ34S, 207,208Pb/206Pb, and δ65Cu was observed for fingernails.
Collapse
Affiliation(s)
- Katerina Rodiouchkina
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium
| | - Ilia Rodushkin
- ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Luleå, Sweden
| | - Steven Goderis
- Vrije Universiteit Brussel, Department of Chemistry, Analytical, Environmental and Geo-Chemistry (AMGC) research group, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Kubik E, Moynier F, Paquet M, Siebert J. Iron Isotopic Composition of Biological Standards Relevant to Medical and Biological Applications. Front Med (Lausanne) 2021; 8:696367. [PMID: 34746169 PMCID: PMC8563829 DOI: 10.3389/fmed.2021.696367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Iron isotopes are fractionated by multiple biological processes, which offers a novel opportunity to study iron homeostasis. The determination of Fe isotope composition in biological samples necessitates certified biological reference materials with known Fe isotopic signature in order to properly assess external reproducibility and data quality between laboratories. We report the most comprehensive study on the Fe isotopic composition for widely available international biological reference materials. They consist of different terrestrial and marine animal organs (bovine, porcine, tuna, and mussel) as well as apple leaves and human hair (ERC-CE464, NIST1515, ERM-DB001, ERM-BB186, ERM-BB184, ERM-CE196, BCR668, ERM-BB185, ERM-BB124). Previously measured Fe isotopic compositions were available for only two of these reference materials (ERC-CE464 tuna fish and ERM-BB186 pig kidney) and these literature data are in excellent agreement with our data. The Fe isotopic ratios are reported as the permil deviation of the 56Fe/54Fe ratio from the IRMM-014 standard. All reference materials present δ56Fe ranging from −2.27 to −0.35%0. Combined with existing data, our results suggest that animal models could provide useful analogues of the human body regarding the metabolic pathways affecting Fe isotopes, with many potential applications to medicine.
Collapse
Affiliation(s)
- Edith Kubik
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| | - Marine Paquet
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Julien Siebert
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Sauzéat L, Costas-Rodríguez M, Albalat E, Mattielli N, Vanhaecke F, Balter V. Inter-comparison of stable iron, copper and zinc isotopic compositions in six reference materials of biological origin. Talanta 2020; 221:121576. [PMID: 33076122 DOI: 10.1016/j.talanta.2020.121576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023]
Abstract
There is a lack of certified reference materials with an organic matrix for which metal isotope ratios have been certified. Here, we have determined the iron, copper and zinc stable isotopic compositions for six reference materials of biological origin with diverse matrices, i.e. BCR-380R (whole milk), BCR-383 (beans), ERM-CE464 (tuna fish), SRM-1577c (bovine liver), DORM-4 (fish protein) and TORT-3 (lobster hepatopancreas) in three different labs. The concentrations for six major and sixteen trace elements, spanning almost four orders of magnitude, were also measured and the results obtained show an excellent agreement with certified values, demonstrating that the dissolution step was quantitative for all the standards. By taking literature data into account, 39 possible pair-wise comparisons of mean iron, copper and zinc isotopic values (δ values) could be made. Results of Tukey multiple comparisons of means yielded 11 significantly different pairs. Most of these differences are of the same order of magnitude as the estimated mean expanded uncertainties (U, k = 2) (±0.10‰, ±0.05‰, and ±0.05‰ for the δ56Fe, δ65Cu and δ66Zn values, respectively). The present inter-comparison study finally proposes nineteen new preferred values for the Cu, Zn and Fe isotopic compositions of six reference materials of biological origin.
Collapse
Affiliation(s)
- Lucie Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, F-63000, Clermont-Ferrand, France
| | - Marta Costas-Rodríguez
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | | | - Nadine Mattielli
- Laboratoire G-Time, DGES, Université Libre de Bruxelles (ULB), Av. Roosevelt 50, CP 160/02, 1050, Brussels, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | - Vincent Balter
- Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, F-69007, Lyon, France.
| |
Collapse
|
5
|
Liang YH, Huang KYA, Lee DC, Pang KN, Chen SH. High-precision iron isotope analysis of whole blood, erythrocytes, and serum in adults. J Trace Elem Med Biol 2020; 58:126421. [PMID: 31805477 DOI: 10.1016/j.jtemb.2019.126421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/13/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Iron isotopic composition serves as a biological indicator of Fe metabolism in humans. In the process of Fe metabolism, essential carriers of Fe circulate in the blood and pass through storage organs and intestinal absorptive tissues. This study aimed to establish an analytical method for high-precision Fe isotopic measurement, investigate Fe concentration and isotopic composition in different parts of whole blood, and explore the potential of Fe isotopic composition as an indicator for Fe status within individuals. ANALYTICAL METHODS A total of 23 clinically healthy Taiwanese adults of Han descent were enrolled randomly and Fe isotopic compositions of their whole blood, erythrocytes, and serum were measured. The Fe isotopic analysis was performed by Neptune Plus multiple-collector inductively coupled plasma mass spectrometry with double-spike technique. The precision and reproducibility of the Fe isotopic analysis were monitored by international biological and geological reference materials. MAIN FINDINGS High-precision Fe isotopic measurements were achieved alongside with high consistency in the isotopic data for well-characterized reference materials. The Fe isotopic signatures of whole blood and erythrocytes were resolvable from that of serum, where both whole blood and erythrocytes contained significantly lighter Fe isotopic compositions compared to the case of serum (P = 0.0296 and P = 0.0004, respectively). The δ56/54Fe value of the serum sample was 0.2‰ heavier on an average than those of whole blood or erythrocytes. This isotopic fractionation observed in different parts of whole blood may indicate redox processes involved in Fe cycling, e.g. erythrocyte production and Fe transportation. Moreover, the δ56/54Fe values of whole blood and serum significantly correlated with the hemoglobin level (P = 0.0126 and P = 0.0020, respectively), erythrocyte count (P = 0.0014 and P = 0.0005, respectively), and Mentzer index (P = 0.0055 and P = 0.0011, respectively), suggesting the Fe isotopic composition as an indicator of functional Fe status in healthy adults. The relationships between blood Fe isotopic compositions and relevant biodemographic variables were also examined. While the average Fe concentration of whole blood was significantly higher in males than in females (P = 0.0028), females exhibited a heavier Fe isotopic composition compared to that of males in whole blood (P = 0.0010) and serum (P < 0.0001). A significantly inverse correlation of the whole blood δ56/54Fe value with body mass index of individuals (P = 0.0095) was also observed. CONCLUSION The results presented herein reveal that blood Fe isotopic signature is consequentially linked to baseline erythrocyte parameters in individuals and is significantly affected by the gender and body mass index in the adult population. These findings support the role of Fe isotopic composition as an indicator for the variance of Fe metabolism among adult individuals and populations and warrant further study to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yu-Hsuan Liang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Ying A Huang
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; School of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kwan-Nang Pang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hsiang Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| |
Collapse
|
6
|
Hastuti AAMB, Costas-Rodríguez M, Anoshkina Y, Parnall T, Madura JA, Vanhaecke F. High-precision isotopic analysis of serum and whole blood Cu, Fe and Zn to assess possible homeostasis alterations due to bariatric surgery. Anal Bioanal Chem 2019; 412:727-738. [PMID: 31836925 DOI: 10.1007/s00216-019-02291-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/02/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Bariatric surgery is an effective procedure to achieve weight loss in obese patients. However, homeostasis of essential metals may be disrupted as the main absorption site is bypassed. In this study, we determined Cu, Fe and Zn isotopic compositions in paired serum and whole blood samples of patients who underwent Roux-en-Y gastric bypass (RYGB) surgery for evaluation of longitudinal changes and their potential relation to mineral element concentrations and relevant clinical parameters used for monitoring the patient's condition. Samples from eight patients were collected pre-surgery and at 3, 6 and 12 months post-surgery. Multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) was used for high-precision isotope ratio measurements. Alterations in metal homeostasis related to bariatric surgery were reflected in the serum and whole blood Cu, Fe and Zn isotopic compositions. The serum and whole blood Cu became isotopically lighter (lower δ65Cu values) after bariatric surgery, reaching statistical significance at 6 months post-surgery (p < 0.05). The difference between the serum and the whole blood Zn isotopic composition increased after surgery, reaching significance from 6 months post-surgery onwards (p < 0.05). Those changes in Cu, Fe and Zn isotopic compositions were not accompanied by similar changes in their respective concentrations, making isotopic analysis more sensitive to physiological changes than elemental content. Furthermore, the Zn isotopic composition correlates with blood glycaemic and lipid parameters, while the Fe isotopic composition correlates with glycaemic parameters. Graphical Abstract.
Collapse
Affiliation(s)
- Agustina A M B Hastuti
- Department of Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | - Marta Costas-Rodríguez
- Department of Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | - Yulia Anoshkina
- Department of Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | - Taylor Parnall
- Department of General Surgery, Mayo Clinic, 5779 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - James A Madura
- Department of General Surgery, Mayo Clinic, 5779 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
Muriuki JM, Mentzer AJ, Band G, Gilchrist JJ, Carstensen T, Lule SA, Goheen MM, Joof F, Kimita W, Mogire R, Cutland CL, Diarra A, Rautanen A, Pomilla C, Gurdasani D, Rockett K, Mturi N, Ndungu FM, Scott JAG, Sirima SB, Morovat A, Prentice AM, Madhi SA, Webb EL, Elliott AM, Bejon P, Sandhu MS, Hill AVS, Kwiatkowski DP, Williams TN, Cerami C, Atkinson SH. The ferroportin Q248H mutation protects from anemia, but not malaria or bacteremia. SCIENCE ADVANCES 2019; 5:eaaw0109. [PMID: 31517041 PMCID: PMC6726445 DOI: 10.1126/sciadv.aaw0109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Iron acquisition is critical for life. Ferroportin (FPN) exports iron from mature erythrocytes, and deletion of the Fpn gene results in hemolytic anemia and increased fatality in malaria-infected mice. The FPN Q248H mutation (glutamine to histidine at position 248) renders FPN partially resistant to hepcidin-induced degradation and was associated with protection from malaria in human studies of limited size. Using data from cohorts including over 18,000 African children, we show that the Q248H mutation is associated with modest protection against anemia, hemolysis, and iron deficiency, but we found little evidence of protection against severe malaria or bacteremia. We additionally observed no excess Plasmodium growth in Q248H erythrocytes ex vivo, nor evidence of selection driven by malaria exposure, suggesting that the Q248H mutation does not protect from malaria and is unlikely to deprive malaria parasites of iron essential for their growth.
Collapse
Affiliation(s)
- John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alexander J. Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gavin Band
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James J. Gilchrist
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Swaib A. Lule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Morgan M. Goheen
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- University of North Carolina School of Medicine, CB 7435, Chapel Hill, North Carolina USA
| | - Fatou Joof
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Wandia Kimita
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Reagan Mogire
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Clare L. Cutland
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amidou Diarra
- Centre de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso
| | - Anna Rautanen
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Kirk Rockett
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neema Mturi
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - Francis M. Ndungu
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
| | - J. Anthony G. Scott
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- London School of Hygiene and Tropical Medicine, London, UK
| | - Sodiomon B. Sirima
- Centre de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso
| | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford, UK
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Shabir A. Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Emily L. Webb
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M. Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Adrian V. S. Hill
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Dominic P. Kwiatkowski
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Thomas N. Williams
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Medicine, Imperial College, London, UK
| | - Carla Cerami
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Paediatrics, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Tanaka YK, Hirata T. Stable Isotope Composition of Metal Elements in Biological Samples as Tracers for Element Metabolism. ANAL SCI 2018; 34:645-655. [PMID: 29887552 DOI: 10.2116/analsci.18sbr02] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stable isotope composition varies due to different reactivity or mobility among the isotopes. Various pioneering studies revealed that isotope fractionation is common for many elements, and it is now widely recognized that the stable isotope compositions of biometals can be used as new tracers for element metabolism. In this review, we summarize the recently published isotope compositions of iron (Fe), copper (Cu), zinc (Zn), and calcium (Ca) in various biological samples, including tissues from plants, animals, and humans. Discussions were carried out with respect to age, sex, organ, and the presence or absence of particular diseases for animals and humans. For Fe and Cu isotopes, changes in oxidation states generate large isotopic fractionation through the metabolism of those elements. Isotope composition of Zn greatly fractionates among tissues even without changes in oxidation state. Isotopic composition of Ca is a powerful tracer for the metabolism of Ca in bones. The review results suggest that the stable isotope compositions of the biometals can be used as effective markers for diagnostics of various kinds of diseases related to metabolic disorders.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Geochemical Research Center, The University of Tokyo
| | | |
Collapse
|