1
|
Kitagawa T, Matsumoto A, Terashima I, Uesono Y. Antimalarial Quinacrine and Chloroquine Lose Their Activity by Decreasing Cationic Amphiphilic Structure with a Slight Decrease in pH. J Med Chem 2021; 64:3885-3896. [PMID: 33775096 DOI: 10.1021/acs.jmedchem.0c02056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quinacrine (QC) and chloroquine (CQ) have antimicrobial and antiviral activities as well as antimalarial activity, although the mechanisms remain unknown. QC increased the antimicrobial activity against yeast exponentially with a pH-dependent increase in the cationic amphiphilic drug (CAD) structure. CAD-QC localized in the yeast membranes and induced glucose starvation by noncompetitively inhibiting glucose uptake as antipsychotic chlorpromazine (CPZ) did. An exponential increase in antimicrobial activity with pH-dependent CAD formation was also observed for CQ, indicating that the CAD structure is crucial for its pharmacological activity. A decrease in CAD structure with a slight decrease in pH from 7.4 greatly reduced their effects; namely, these drugs would inefficiently act on falciparum malaria and COVID-19 pneumonia patients with acidosis, resulting in resistance. The decrease in CAD structure at physiological pH was not observed for quinine, primaquine, or mefloquine. Therefore, restoring the normal blood pH or using pH-insensitive quinoline drugs might be effective for these infectious diseases with acidosis.
Collapse
Affiliation(s)
- Tomohisa Kitagawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Grimsey EM, Piddock LJV. Do phenothiazines possess antimicrobial and efflux inhibitory properties? FEMS Microbiol Rev 2020; 43:577-590. [PMID: 31216574 DOI: 10.1093/femsre/fuz017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is a global health concern; the rise of drug-resistant bacterial infections is compromising the medical advances that resulted from the introduction of antibiotics at the beginning of the 20th century. Considering that the presence of mutations within individuals in a bacterial population may allow a subsection to survive and propagate in response to selective pressure, as long as antibiotics are used in the treatment of bacterial infections, development of resistance is an inevitable evolutionary outcome. This, combined with the lack of novel antibiotics being released to the clinical market, means the need to develop alternative strategies to treat these resistant infections is critical. We discuss how the use of antibiotic adjuvants can minimise the appearance and impact of resistance. To this effect, several phenothiazine-derived drugs have been shown to potentiate the activities of antibiotics used to treat infections caused by Gram-positive and Gram-negative bacteria. Outside of their role as antipsychotic medications, we review the evidence to suggest that phenothiazines possess inherent antibacterial and efflux inhibitory properties enabling them to potentially combat drug resistance. We also discuss that understanding their mode of action is essential to facilitate the design of new phenothiazine derivatives or novel agents for use as antibiotic adjuvants.
Collapse
Affiliation(s)
- Elizabeth M Grimsey
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
3
|
Buckner MMC, Ciusa ML, Meek RW, Moorey AR, McCallum GE, Prentice EL, Reid JP, Alderwick LJ, Di Maio A, Piddock LJV. HIV Drugs Inhibit Transfer of Plasmids Carrying Extended-Spectrum β-Lactamase and Carbapenemase Genes. mBio 2020; 11:e03355-19. [PMID: 32098822 PMCID: PMC7042701 DOI: 10.1128/mbio.03355-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial-resistant (AMR) infections pose a serious risk to human and animal health. A major factor contributing to this global crisis is the sharing of resistance genes between different bacteria via plasmids. The WHO lists Enterobacteriaceae, such as Escherichia coli and Klebsiella pneumoniae, producing extended-spectrum β-lactamases (ESBL) and carbapenemases as "critical" priorities for new drug development. These resistance genes are most often shared via plasmid transfer. However, finding methods to prevent resistance gene sharing has been hampered by the lack of screening systems for medium-/high-throughput approaches. Here, we have used an ESBL-producing plasmid, pCT, and a carbapenemase-producing plasmid, pKpQIL, in two different Gram-negative bacteria, E. coli and K. pneumoniae Using these critical resistance-pathogen combinations, we developed an assay using fluorescent proteins, flow cytometry, and confocal microscopy to assess plasmid transmission inhibition within bacterial populations in a medium-throughput manner. Three compounds with some reports of antiplasmid properties were tested; chlorpromazine reduced transmission of both plasmids and linoleic acid reduced transmission of pCT. We screened the Prestwick library of over 1,200 FDA-approved drugs/compounds. From this, we found two nucleoside analogue drugs used to treat HIV, abacavir and azidothymidine (AZT), which reduced plasmid transmission (AZT, e.g., at 0.25 μg/ml reduced pCT transmission in E. coli by 83.3% and pKpQIL transmission in K. pneumoniae by 80.8% compared to untreated controls). Plasmid transmission was reduced by concentrations of the drugs which are below peak serum concentrations and are achievable in the gastrointestinal tract. These drugs could be used to decolonize humans, animals, or the environment from AMR plasmids.IMPORTANCE More and more bacterial infections are becoming resistant to antibiotics. This has made treatment of many infections very difficult. One of the reasons this is such a large problem is that bacteria are able to share their genetic material with other bacteria, and these shared genes often include resistance to a variety of antibiotics, including some of our drugs of last resort. We are addressing this problem by using a fluorescence-based system to search for drugs that will stop bacteria from sharing resistance genes. We uncovered a new role for two drugs used to treat HIV and show that they are able to prevent the sharing of two different types of resistance genes in two unique bacterial strains. This work lays the foundation for future work to reduce the prevalence of resistant infections.
Collapse
Affiliation(s)
- Michelle M C Buckner
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - M Laura Ciusa
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Richard W Meek
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alice R Moorey
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Gregory E McCallum
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Emma L Prentice
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Jeremy P Reid
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Luke J Alderwick
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alessandro Di Maio
- Birmingham Advanced Light Microscopy, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
4
|
Shpakova NM, Orlova NV, Yershov SS. Correction of Cold Damage to Mammalian Erythrocytes by Chlorpromazine to Influence the Dynamic Structure of a Membrane. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Mangiapia G, Gvaramia M, Kuhrts L, Teixeira J, Koutsioubas A, Soltwedel O, Frielinghaus H. Effect of benzocaine and propranolol on phospholipid-based bilayers. Phys Chem Chem Phys 2017; 19:32057-32071. [DOI: 10.1039/c7cp06077g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug/bilayer interactions are fundamental in determining the action mechanism of active ingredients. Neutron techniques represent unique tools for having a clear comprehension of such interactions.
Collapse
Affiliation(s)
- G. Mangiapia
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - M. Gvaramia
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
- Ivane Javakhishvili Tbilisi State University
| | - L. Kuhrts
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - J. Teixeira
- Laboratoire Léon Brillouin (CEA-CNRS)
- CEA-Saclay
- F-91191 Gif-sur-Yvette CEDEX
- France
| | - A. Koutsioubas
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - O. Soltwedel
- Heinz Maier-Leibnitz Zentrum
- Technische Universität München
- D-85747 Garching
- Germany
| | - H. Frielinghaus
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| |
Collapse
|