1
|
Fan H, Xie T, Pang Y, Zhu S, Feng P, Zhu X, Zhao C, Guan S, Yao H. Sulfonated Polyimide Membranes Constructed by Main-Chain and Molecular-Network Engineering Strategy for Direct Methanol Fuel Cell. Macromol Rapid Commun 2024; 45:e2300502. [PMID: 37996994 DOI: 10.1002/marc.202300502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Excessive swelling is one important factor that leads to high fuel permeability and limited operating concentration of methanol for proton exchange membranes. Herein, a collaborative strategy of main-chain and molecular-network engineering is applied to lower swelling ratio and improve methanol resistance for highly sulfonated polyimide. Two m-phenylenediamine monomers (4-(2,3,5,6-tetrafluoro-4-vinylphenoxy)benzene-1,3-diamine and 4,6-bis(2,3,5,6-tetrafluoro-4-vinylphenoxy)benzene-1,3-diamine) with tetrafluorostyrol groups are designed and synthesized. Two series of cross-linked sulfonated polyimides (CSPI-Ts, CSPI-Bs) are prepared from the two diamines, 4,4'-diaminostilbene-2,2'-disulfonic acid and 1,4,5,8-naphthalenetetracarboxylicdianhydride. The rigid main-chain structure is cornerstone for wet CSPI-Ts and CSPI-Bs remaining stable at elevated temperatures. The introduction of hydrophobic cross-linked network further improves their dimensional stability and methanol resistance. CSPI-Ts and CSPI-Bs show obviously improved performances containing high proton conductivity (121 ± 0.27-158 ± 0.35 S cm-1 ), low swelling ratio (9.6 ± 0.40%-16.1 ± 0.01%) and methanol permeability (4.14-7.69 × 10-7 cm2 s-1 ) at 80 °C. The direct methanol fuel cell (DMFC) is assembled from CSPI-T-10 with balanced properties, and it exhibits high maximum power density (PDmax ) of 82.3 and 72.6 mW cm-2 in 2 and 10 m methanol solution, respectively. The ratio of PDmax in 10 m methanol solution to the value in 2 m methanol solution is as high as 88%. The CSPI-T-10 is promising proton exchange membrane candidate for DMFC application.
Collapse
Affiliation(s)
- Hang Fan
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Tiantian Xie
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yang Pang
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shiyang Zhu
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Pengju Feng
- Guangzhou High-tech Zone Institute for Energy Technology Co., Ltd, Hongyuan Road 8, Guangzhou, 510700, P. R. China
| | - Xuanbo Zhu
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Chengji Zhao
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shaowei Guan
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Hongyan Yao
- National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Xie T, Pang Y, Fan H, Zhu S, Zhao C, Guan S, Yao H. Controlling the microphase morphology and performance of cross-linked highly sulfonated polyimide membranes by varying the molecular structure and volume of the hydrophobic cross-linkable diamine monomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Singh A, Chaterjee R, Ghorai A, Banerjee S. Membrane properties of sulfonated polytriazoles with molecular branching. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Asheesh Singh
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
- Department of Chemistry Shobhit University, Gangoh Saharanpur Uttar Pradesh India
| | - Rimpa Chaterjee
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Arijit Ghorai
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Susanta Banerjee
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
4
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
6
|
Roy S, Saha S, Kumar AG, Ghorai A, Banerjee S. Synthesis and characterization of new sulfonated copolytriazoles and their proton exchange membrane properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sambit Roy
- Materials Science Centre, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Sayantani Saha
- Materials Science Centre, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Anaparthi Ganesh Kumar
- Materials Science Centre, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Arijit Ghorai
- Materials Science Centre, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
7
|
Singh A, Kumar AG, Saha S, Mukherjee R, Bisoi S, Banerjee S. Synthesis and characterization of chemically stable sulfonated copoly(triazole imide)s with high proton conductivity. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Asheesh Singh
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Anaparthi G. Kumar
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Sayantani Saha
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rajdeep Mukherjee
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Soumendu Bisoi
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Susanta Banerjee
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
8
|
Singh A, Banerjee S. Synthesis and Characterization of Highly Proton Conducting Sulfonated Polytriazoles. ACS OMEGA 2018; 3:9620-9629. [PMID: 31459093 PMCID: PMC6644650 DOI: 10.1021/acsomega.8b01363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/07/2018] [Indexed: 06/10/2023]
Abstract
This article describes the synthesis and characterization of highly sulfonated polytriazole copolymers (PTSQSH-I to IV) with IECw values ranging from 2.41 to 3.49 mequiv g-1. The copolymers were synthesized by click reaction between equimolar amount of a dialkyne monomer, potassium 2,5-bis(2-propyn-1-yloxy)benzenesulfonate, and a mixture of two different diazide monomers, 4,4-bis[3'-trifluoromethyl-4'(4-azidobenzoxy)benzyl]biphenyl and 4,4'-diazido-2,2'-stilbene disulfonic acid disodium salt. The copolymers were characterized by Fourier transform infrared and NMR spectroscopy techniques. The membranes were prepared by dissolving the salt form of the copolymers in dimethyl sulfoxide. The copolymers showed high thermal, mechanical, and oxidative stabilities, and the acidified membranes showed very high proton conductivity (43-173 and 132-304 mS cm-1 at 30 and 80 °C, respectively). Transmission electron microscopy images confirmed the formation of well-phase-separated morphology with interconnected hydrophilic domains (20-150 nm).
Collapse
|
9
|
Saha S, Kumar AG, Tabish Noori M, Banerjee S, Ghangrekar MM, Komber H, Voit B. New crosslinked sulfonated polytriazoles: Proton exchange properties and microbial fuel cell performance. Eur Polym J 2018; 103:322-334. [DOI: 10.1016/j.eurpolymj.2018.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|