1
|
Xing X, Gao M, Lei M, Cheng K, Zhao Y, Du X, Zong L, Qiu D, Liu X. MOF-mediated dual energy transfer nanoprobe integrated with exonuclease III amplification strategy for highly sensitive detection of DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1916-1922. [PMID: 38497280 DOI: 10.1039/d4ay00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Accurate quantitative detection of DNA is an advanced strategy in various fields (such as disease diagnosis and environmental monitoring), but the classical DNA detection method usually suffers from low sensitivity, expensive thermal cyclers, or strict annealing conditions. Herein, a MOF-ERA platform for ultrasensitive HBV-DNA detection is constructed by integrating metal-organic framework (MOF)-mediated double energy transfer nanoprobe with exonuclease III (Exo III)-assisted target recycling amplification. The proposed double energy transfer containing a donor and two receptors is simply composed of MOFs (UiO-66-NH2, a well-studied MOF) modified with a signal probe formed by the hybridization of carboxyuorescein (FAM)-labeled DNA (FDNA) and black hole quencher (BHQ1)-terminated DNA (QDNA), resulting in low fluorescence signal. After the addition of HBV-DNA, Exo III degradation to FDNA is activated, leading to the liberation of the numerous FAM molecules, followed by the generation of a significant fluorescence signal owing to the negligible binding of MOFs with free FAM molecules. The results certify that the MOF-ERA platform can be successfully used to assay HBV-DNA in the range of 1.0-25.0 nM with a detection limit of 97.2 pM, which is lower than that without BHQ1 or Exo III. The proposed method with the superiorities of low background signal and high selectivity holds promise for early disease diagnosis and clinical biomedicine applications.
Collapse
Affiliation(s)
- Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengying Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Minglin Lei
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Kunqi Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Yifan Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xianchao Du
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Luyi Zong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xueguo Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China.
| |
Collapse
|
2
|
A novel ratiometric electrochemical aptasensor for highly sensitive detection of carcinoembryonic antigen. Anal Biochem 2022; 659:114957. [PMID: 36265690 DOI: 10.1016/j.ab.2022.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
A novel ratiometric electrochemical aptasensor was proposed for carcinoembryonic antigen (CEA) detection based on exonuclease III (Exo III)-assisted recycling and rolling circle amplification (RCA) strategies. A thiolated ferrocene-labeled hairpin probe 2 (Fc-HP2) was fixed on the gold nanoparticles (AuNPs)-modified gold electrode (AuE) surface through Au-S bonds. The presence of CEA led to the release of trigger, which hybridized with the 3'-protruding of hairpin probe 1 (HP1) and triggered the Exo III cleavage reaction, accompanied by the releasing of trigger and generation of new DNA fragment which was used for the successive hybridization with Fc-HP2. After the Exo III cleavage process, the remaining Fc-HP2 fragments hybridized as primers with the RCA template to initiate the RCA process, and long single-stranded polynucleotides were produced for methylene blue (MB) binding. Such changes resulted in the signal of Fc (IFc) decreased and that of MB (IMB) increased, achieving a linear relationship between IMB/IFc and logarithm of CEA concentrations ranging from 1.0 pg mL-1 to 100.0 ng mL-1 with a detection limit of 0.59 pg mL-1. Additionally, the developed aptasensor had been successfully applied to detect CEA in human serum samples. Therefore, the proposed strategy might provide a new platform for clinical detections of CEA.
Collapse
|
3
|
Pang L, Pi X, Yang X, Song D, Qin X, Wang L, Man C, Zhang Y, Jiang Y. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review. Crit Rev Food Sci Nutr 2022; 64:5398-5413. [PMID: 36476145 DOI: 10.1080/10408398.2022.2154073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Pham TTD, Phan LMT, Park J, Cho S. Review—Electrochemical Aptasensor for Pathogenic Bacteria Detection. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:087501. [DOI: 10.1149/1945-7111/ac82cd] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Pathogenic bacteria are a major public cause of foodborne and waterborne infections and are currently among the most serious public health threats. Conventional diagnostic techniques for bacteria, including plate culturing, the polymerase chain reaction, and the enzyme-linked immunosorbent assay, have many limitations, such as time consumption, high rates of false results, and complex instrument requirements. Aptamer-based electrochemical biosensors for bacteria address several of these issues and are promising for bacterial detection. This review discusses the current advances in electrochemical aptasensors for pathogenic bacteria with regard to the sensing performance with various specific aptamers for different types of bacteria. The advantages and disadvantages of these electrochemical aptasensors were investigated with the aim of promoting the development and commercialization of electrochemical aptasensors for the point-of-care detection of bacteria.
Collapse
|
5
|
Zhu Z, Pei Q, Li J, Zhang Q, Xu W, Wang Y, Liu S, Huang J. Two-stage nicking enzyme signal amplification (NESA)-based biosensing platform for the ultrasensitive electrochemical detection of pathogenic bacteria. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1490-1497. [PMID: 35348134 DOI: 10.1039/d1ay02103f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sensitive and selective detection of pathogenic bacteria represents an essential approach in food safety analysis and clinical diagnostics. We report the development of a simple, rapid, and low-cost electrochemical biosensing strategy for the detection of pathogenic bacteria with ultrasensitivity and high specificity. The biosensor relies on the target and aptamer binding-triggered two-stage nicking enzyme signal amplification (NESA) and three-way junction probe-mediated electrochemical signal transduction. In the presence of the target S. typhimurium, the specific binding of S. typhimurium and aptamer results in the release of a primer, which hybridizes with HAP1 and initiates an extension reaction with the aid of polymerase and dNTPs. A specific recognition site for Nt.BsmaI is generated in the DNA duplex; thus, the produced DNA is nicked and the secondary primer is released (named recycle I). Subsequently, the reaction solution supplemented with a helper DNA is dropped on the electrode surface, and a three-way junction probe containing a specific recognition site for Nt.BsmaI is thus formed. The MB-labeled probe is nicked with the help of Nt.BsmaI and the dissociated primer-helper DNA duplex combines with another HAP2 (named recycle II). Thus, a remarkably decreased electrochemical signal is generated because the electroactive MB is far away from the electrode surface. As far as we know, this work is the first time that NESA and three-way junction probe-mediated electrochemical signal transduction has been used for pathogenic bacteria detection. Under optimal conditions, the results reveal that the calibration plot obtained for S. typhimurium is approximately linear from 9.6 to 9.6 × 105 cfu mL-1 with the limit of detection of 8 cfu mL-1. Additionally, the proposed strategy has been successfully applied to the quantitative assay of S. typhimurium in the real samples. Therefore, the NESA-based biosensing strategy might create a useful and practical platform for pathogenic bacteria identification, and the related food safety analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Zhixue Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Qianqian Pei
- Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jingjing Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Qingxin Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
| | - Wanqing Xu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
6
|
A simple, one-pot and ultrasensitive DNA sensor via Exo III-Assisted target recycling and 3D DNA walker cascade amplification. Anal Chim Acta 2020; 1147:15-22. [PMID: 33485573 DOI: 10.1016/j.aca.2020.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022]
Abstract
Rapid, sensitive, and user-friendly nucleic acid detection is of growing importance in early clinical diagnosis. Here, we construct a simple, one-pot and ultrasensitive DNA sensor via exonuclease III (Exo III)-assisted target recycling amplification (ERA) combined with 3D DNA walker cascade amplification. In the presence of single-stranded DNA target, the ERA process is activated to generate numerous walker strands (WS). Thereafter, Exo III-powered WSs autonomously move along magnetic bead (MB)-based 3D track to release numerous AgNCs into the supernatant as an amplified signal output. This biosensor had a low detection limit of 18 fM and an analytical range of 40 fM to 1 pM. Furthermore, the practical application potential of this biosensor was also confirmed by the spiking experiments of p53 into human serum and urine samples.
Collapse
|
7
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
8
|
|
9
|
Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens. SENSORS 2019; 19:s19224916. [PMID: 31718098 PMCID: PMC6891683 DOI: 10.3390/s19224916] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
The vital importance of rapid and accurate detection of food borne pathogens has driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use. This review covers the following three aspects: food borne pathogens and conventional detection methods, the design and fabrication of electrochemical DNA biosensors and several techniques for improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA biosensors in the field of food borne pathogen detection, we also predict and prospect future research focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials (enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal reading devices).
Collapse
|
10
|
Pei Q, Song X, Liu S, Wang J, Leng X, Cui X, Yu J, Wang Y, Huang J. A facile signal-on electrochemical DNA sensing platform for ultrasensitive detection of pathogenic bacteria based on Exo III-assisted autonomous multiple-cycle amplification. Analyst 2019; 144:3023-3029. [PMID: 30900712 DOI: 10.1039/c9an00036d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A facile signal-on electrochemical DNA biosensor has been developed for ultrasensitive detection of pathogenic bacteria using an Exo III-assisted autonomous multiple-cycle amplification strategy. The strategy relies on pathogens and aptamer binding-initiated release of a trigger, which combines with the 3'-protruding terminus of the hairpin probe 1, leading to the formation of double-stranded DNA with a blunt 3' terminus which starts the Exo III-assisted multiple signal amplification reaction. In addition, hairpin probe 2 labeled with an electroactive reporter at the middle of the loop region is ingeniously designed to contain a short hairpin-embedded segment, which can fold into a hairpin structure via an Exo III-assisted cleavage reaction, thus bringing the redox molecule in proximity to the electrode surface for "signal-on" sensing. Under optimal conditions, this biosensor exhibits a very low detection limit as low as 8 cfu mL-1 and a wide linear range from 1.0 × 101 to 1.0 × 107 cfu mL-1 of target pathogenic bacteria. As far as we know, this is the first time that the Exo III-assisted autonomous multiple-cycle amplification strategy has been used for signal-on electrochemical sensing of pathogenic bacteria. In addition, the proposed sensor can also be used for highly sensitive detection of other targets by changing the aptamer sequence, such as nucleic acids, proteins and small molecules. Therefore, the proposed signal-on electrochemical sensing strategy might provide a simple and practical new platform for detection of pathogenic bacteria and related biological analysis, food safety inspection and environmental monitoring.
Collapse
Affiliation(s)
- Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Xiaolei Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Jingfeng Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| | - Xueqi Leng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yu Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China and College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| |
Collapse
|
11
|
Song X, Wang Y, Liu S, Zhang X, Wang H, Wang J, Huang J. Ultrasensitive electrochemical detection of Hg 2+ based on an Hg 2+-triggered exonuclease III-assisted target recycling strategy. Analyst 2018; 143:5771-5778. [PMID: 30338323 DOI: 10.1039/c8an01409d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the present work, a simple, rapid, isothermal, and ultrasensitive homogeneous electrochemical biosensing platform for target Hg2+ detection was developed on the basis of an exonuclease III (Exo III)-aided target recycling amplification strategy. In the assay, a label-free hairpin probe (HP1) was ingeniously designed, containing a protruding DNA fragment at the 3'-termini as the recognition unit for target Hg2+. Also, the DNA fragment in the loop region and 5'-termini (Helper) could be used when a secondary target analog is introduced, but it is caged in the stem region of HP1 when without such a target. The produced secondary target Helper opened the methylene blue (MB)-labeled hairpin probe (HP2) and triggered the Exo III cleavage process, accompanied with the secondary target recycling. This accordingly resulted in the autonomous reduction of the electroactive material MB on the electrode, inducing a distinct decrease in the electrochemical signal. The current developed homogeneous strategy provides a means for the ultrasensitive electrochemical detection of Hg2+ down to the 227 pM level, with high selectivity. It could be further used as a general autocatalytic and homogeneous strategy toward the detection of a wide spectrum of analytes and may be associated with more analytical techniques.
Collapse
Affiliation(s)
- Xiaolei Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. Electrochemical Methodologies for the Detection of Pathogens. ACS Sens 2018; 3:1069-1086. [PMID: 29756447 DOI: 10.1021/acssensors.8b00239] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens such as culturing the microorganism on agar plates and the polymer chain reaction (PCR) method, able to identify the DNA of the microorganism. Recent breakthroughs will be highlighted, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device. We will conclude with some perspectives and outlooks to better understand shortcomings. Indeed, there is currently no adequate solution that allows the selective and sensitive binding to a specific microorganism, that is fast in detection and screening, cheap to implement, and able to be conceptualized for a wide range of biologically relevant targets.
Collapse
Affiliation(s)
- Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hamed Jafari
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
13
|
Leng X, Li R, Wang Y, Wu Y, Tu Y, Pei Q, Cui X, Huang J, Liu S. Target-activated cascaded digestion amplification of exonuclease III aided signal-on and ultrasensitive fluorescence detection of ATP. NEW J CHEM 2018. [DOI: 10.1039/c7nj04657j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a rapid, one-step and ultrasensitive signal-on fluorescence sensing for the detection of adenosine triphosphate (ATP) based on target-activated cascaded digestion amplification with Exo III aid was developed.
Collapse
Affiliation(s)
- Xueqi Leng
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rongguo Li
- Jinan Maternity and Child Care Hospital
- Jinan 250022
- P. R. China
| | - Yu Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yunping Wu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yuqin Tu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Jiadong Huang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
| | - Su Liu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|