1
|
Solnier J, Zhang Y, Kuo YC, Du M, Roh K, Gahler R, Wood S, Chang C. Characterization and Pharmacokinetic Assessment of a New Berberine Formulation with Enhanced Absorption In Vitro and in Human Volunteers. Pharmaceutics 2023; 15:2567. [PMID: 38004546 PMCID: PMC10675484 DOI: 10.3390/pharmaceutics15112567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However, its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacokinetic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. Increased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB (7.18 × 10-5 ± 7.89 × 10-6 cm/s), were observed when compared to standard/unformulated berberine (4.93 × 10-6 ± 4.28 × 10-7 cm/s). Demonstrating better uptake, LMB achieved significant increases in AUC0-24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up to six-fold) compared to standard berberine formulation and may, therefore, have the potential to improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov with Identifier NCT05370261.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yiming Zhang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yun Chai Kuo
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Min Du
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Kyle Roh
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | | | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia;
- InovoBiologic Inc., Calgary, AB Y2N 4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chuck Chang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| |
Collapse
|
2
|
Makeiff DA, Smith B, Azyat K, Xia M, Alam SB. Development of Gelled-Oil Nanoparticles for the Encapsulation and Release of Berberine. ACS OMEGA 2023; 8:33774-33784. [PMID: 37744867 PMCID: PMC10515596 DOI: 10.1021/acsomega.3c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
In this study, a new drug carrier based on gelled-oil nanoparticles (GNPs) was designed and synthesized for the encapsulation and release of the model hydrophobic drug, berberine chloride (BCl). Two compositions with different oil phases were examined, sesame oil (SO) and cinnamaldehyde (Cin), which were emulsified with water, stabilized with Tween 80 (Tw80), and gelled using an N-alkylated primary oxalamide low-molecular-weight gelator (LMWG) to give stable dispersions of GNPs between 100 and 200 nm in size. The GNP formulation with Cin was significantly favored over SO due to (1) lower gel melting temperatures, (2) higher gel mechanical strength, and (3) significantly higher solubility, encapsulation efficiency, and loading of BCl. Also, the solubility and loading of BCl in Cin were significantly increased (at least 7-fold) with the addition of cinnamic acid. In vitro release studies showed that the release of BCl from the GNPs was independent of gelator concentration and lower than that for BCl solution and the corresponding nanoemulsion (no LWMG). Also, cell internalization studies suggested that the N-alkylated primary oxalamide LMWG did not interfere with the internalization efficiency of BCl into mouse mast cells. Altogether, this work demonstrates the potential use of these new GNP formulations for biomedical studies involving the encapsulation of drugs and nutraceuticals and their controlled release.
Collapse
Affiliation(s)
- Darren A. Makeiff
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Brad Smith
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Khalid Azyat
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Mike Xia
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| |
Collapse
|
3
|
Zhang Y, Li Y, Zhang Y, Liu L, Zou D, Sun W, Li J, Feng Y, Geng Y, Cheng G. Improved solubility and hygroscopicity of enoxacin by pharmaceutical salts formation with hydroxybenzonic acids via charge assisted hydrogen bond. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Zhang Y, Li Y, Su X, Liu L, Sun W, Li J, Feng Y, Geng Y, Cheng G. Improving the solubility of tetrahydropalmatine by introducing sulfonic acid by forming pharmaceutical salts of tetrahydropalmatine with supramolecular helical structure via CAHBs. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Zhang Y, Shi J, Liu L, Su X, Peng B, Sun W, Li J, Feng Y, Geng Y, Cheng G. Improving Solubility and Avoiding Hygroscopicity of Tetrahydropalmatine by Forming a Pharmaceutical Salt Cocrystal via CAHBs. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yunan Zhang
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Jingwen Shi
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Lixin Liu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Xin Su
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Bihui Peng
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Weitong Sun
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Jinjing Li
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yanru Feng
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yiding Geng
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | | |
Collapse
|
6
|
Liu L, An Q, Zhang Y, Sun W, Li J, Feng Y, Geng Y, Cheng G. Improving the solubility, hygroscopicity and permeability of enrofloxacin by forming 1:2 pharmaceutical salt cocrystal with neutral and anionic co-existing p-nitrobenzoic acid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Improving hygroscopic stability of palmatine by replacing Clˉ and preparing single crystal of palmatine-salicylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Zhang YN, Duan Y, Liu LX, Chang L, Feng YR, Wu LL, Zhang L, Zhang YJ, Zou DY, Liu YL, Su X. ON IMPROVING THE HYGROSCOPIC STABILITY OF PALMATINE CHLORIDE WITH CRYSTALLINE PALMATINE SULFOSALICYATE PHARMACEUTICAL SALT. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
The role of hydroxyl group of ethanol in the self-assembly of pharmaceutical cocrystal of myricetin with 4,4′-bipyridine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Zhang Y, Zhang Y, Liu L, Feng Y, Wu L, Zhang L, Zhang Y, Zou D, Liu Y. Assembly of two pharmaceutical salts of sparfloxacin with pyrocatechuic acid: Enhancing in vitro antibacterial activity of sparfloxacin by improving the solubility and permeability. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Zhang Y, Zhang Y, Chang L, Ji Y, Liu L, Feng Y, Wu L, Zhang L, Zhang Y, Zou D, Liu Y, Su X. Crystalline palmatine saccharinate pharmaceutical salt without reducing solubility and improving its hygroscopic stability with regard to palmatine chloride. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Zhang Y, Duan Y, Su J, Liu L, Feng Y, Wu L, Zhang L, Zhang Y, Zou D, Liu Y. Inspiration for revival of old drugs: improving solubility and avoiding hygroscopicity of pipemidic acid by forming two pharmaceutical salts based on charge-assisted hydrogen bond recognitions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03314j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving solubility and avoiding hygroscopicity of pipemidic acid by forming pharmaceutical salts based on CAHBs.
Collapse
Affiliation(s)
- Yunan Zhang
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yu Duan
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jin Su
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Lixin Liu
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yanru Feng
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Lili Wu
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Lei Zhang
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yunjie Zhang
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Dongyu Zou
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yingli Liu
- College of pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
13
|
Zhang YN, Zhang YF, Liu LX, Zhang DJ, Wang Z, Zhang Y, Feng YR, Wu LL, Zhang L, Liu YL, Zhang YJ, Zou DY, Chang L, Su X, Cheng GD, Zhang XS. Pharmaceutical salt of tetrahydroberberine with sulfamic acid prepared via CAHBs. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Liu L, Zou D, Zhang Y, Zhang Q, Feng Y, Guo Y, Liu Y, Zhang X, Cheng G, Wang C, Zhang Y, Zhang L, Wu L, Chang L, Su X, Duan Y, Zhang Y, Liu M. Pharmaceutical salts/cocrystals of enoxacin with dicarboxylic acids: Enhancing in vitro antibacterial activity of enoxacin by improving the solubility and permeability. Eur J Pharm Biopharm 2020; 154:62-73. [PMID: 32645384 DOI: 10.1016/j.ejpb.2020.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Base on improving the solubility and permeability of enoxacin (EX) to enhance the antibacterial activity in vitro, three new pharmaceutical salts/cocrystals of EX with oxalic acid (EX·0.5(C2H2O4)·2(H2O)), malonic acid ((HEX)·C3H3O4) and fumaric acid ((HEX)·C4H3O4) have been designed, synthesized and characterized. Comprehensive analysis structure and Hirshfeld surface reveal that the hydrogen bonds/CAHBs formed by the N atom in the piperazine ring from EX molecule with the carboxylic acid group in the coformer could form a stable crystal structure. It is universally acknowledged that improving the solubility of the EX (BCS class II) to make it a BCS class I drug would obtain a Bioequivalence of immunity to the drug trial. The solubilities of three pharmaceutical salts/cocrystals of EX with dicarboxylic acids are consistent with expectation that they are dramatically improved in pure water than pure enoxacin, and the solubility order of three pharmaceutical salts/cocrystals of EX is consistent with coformers solubility. The permeabilities of three pharmaceutical salts/cocrystals of EX are improved compared with the pure enoxacin, and the variation tendency is consistent with the solubilities of three pharmaceutical salts/cocrystals of EX. In addition, the antibacterial activities in vitro of three pharmaceutical salts/cocrystals of EX are improved compared with the corresponding parent compound (EX), which change the order is consistent with the solubility and permeability. Simultaneously, the hygroscopic stabilities of three pharmaceutical salts/cocrystals are surpassing pure EX, and the hygroscopic stability of molecular cocrystal EX-OXA is better than ionic cocrystal EX-MLO and EX-FUM. This implies that preparation of the pharmaceutical salts/cocrystals of EX with oxalic acid, malonic acid and fumaric acid could not only enhance the antibacterial activity of EX, which base on improving the solubility and permeability of EX, but also improve the hygroscopic stability of EX.
Collapse
Affiliation(s)
- Lixin Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Dongyu Zou
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yunan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China.
| | - Qiang Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yanru Feng
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yingxue Guo
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yingli Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xuesong Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Guangdong Cheng
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yunjie Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Lei Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Lili Wu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Liang Chang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xin Su
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yu Duan
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yanfei Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Moqi Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
15
|
Fernandes RP, de Carvalho ACS, Ekawa B, do Nascimento ALSC, Pironi AM, Chorilli M, Caires FJ. Synthesis and characterization of meloxicam eutectics with mandelic acid and saccharin for enhanced solubility. Drug Dev Ind Pharm 2020; 46:1092-1099. [PMID: 32475190 DOI: 10.1080/03639045.2020.1775633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Meloxicam (MLX) is a non-steroidal anti-inflammatory which is practically insoluble in water, requiring high concentrations to reach therapeutic levels and causing frequently gastrointestinal effects. In this way, the aim of this study was to synthesize two eutectic mixtures of MLX with mandelic acid (MND) and saccharin (SAC) by liquid-assisted grinding resulting in a multicomponent material with enhanced solubility. Mixtures were studied in different stoichiometric and eutectic point was found for each eutectic by Binary phase diagram and Tamman's triangle, with 0.33 molar fraction of MLX for SAC and MND. Eutectics were characterized by thermoanalytical techniques (TG-DSC, EGA, DSC, and DSC microscopy), infrared spectroscopy, and X-ray powder diffraction. Thermal behavior was studied and videos of the materials being heated were available. A polymorphic transition was discovered and studied for MLX-MND eutectic. Each new system was evaluated by solubility, dissolution, and hygroscopicity tests. Eutectics showed an increase in solubility of 1.7× (MLX-MND1), 3.1× (MLX-MND2), and 1.3× (MLX-SAC) with slower dissolution profile when compared with MLX. All new solid forms showed high hygroscopicity at 98% relative humidity with 27.9 and 58.9% increase in mass at day four for MLX-SAC and MLX-MND, deliquescence occurs at day 6. The experiments and analysis in this study help to understand the behavior of eutectics and evaluate them as an approach to modify properties in drugs.
Collapse
Affiliation(s)
- Richard Perosa Fernandes
- Department of Analytical Chemistry, Institute of Chemistry - São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Bruno Ekawa
- Department of Analytical Chemistry, Institute of Chemistry - São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Andressa Maria Pironi
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Flávio Junior Caires
- Department of Analytical Chemistry, Institute of Chemistry - São Paulo State University (UNESP), Araraquara, Brazil.,Department of Chemistry, School of Science - São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
16
|
Tetrahydroberberine pharmaceutical salts/cocrystals with dicarboxylic acids: Charge-assisted hydrogen bond recognitions and solubility regulation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Liu L, Zou D, Zhang Y, Zhang D, Zhang Y, Zhang Q, Wang J, Zeng S, Wang C. Assembly of three pharmaceutical salts/cocrystals of tetrahydroberberine with sulfophenyl acids: improving the properties by formation of charge-assisted hydrogen bonds. NEW J CHEM 2019. [DOI: 10.1039/c9nj00131j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The self-recognition of CAHBs could stabilize crystal packing of pharmaceutical salts/cocrystals of THB and improve physicochemical properties of THB.
Collapse
Affiliation(s)
- Lixin Liu
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| | - Dongyu Zou
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| | - Yunan Zhang
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| | - Dajun Zhang
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| | - Qiang Zhang
- College of Public Health, Jiamusi University
- Jiamusi 154007
- China
| | - Jian Wang
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| | - Shaoyu Zeng
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| | - Conggang Wang
- College of Pharmacy, Jiamusi University
- Jiamusi 154007
- China
| |
Collapse
|