1
|
Fatima T, Jolly R, Mushahid F, Khan N, Umar MS, Owais M, Shakir M. Combinatorial approach to fabricate silica doped polyvinyl alcohol/hydroxyapatite/carrageenan nanocomposite for bone regeneration applications. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
2
|
P NC, S KB, V SK. Multifunctional organic and inorganic hybrid bionanocomposite of chitosan/poly(vinyl alcohol)/nanobioactive glass/nanocellulose for bone tissue engineering. J Mech Behav Biomed Mater 2022; 135:105427. [DOI: 10.1016/j.jmbbm.2022.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
|
3
|
Zia I, Jolly R, Mirza S, Rehman A, Shakir M. Nanocomposite Materials Developed from Nano‐hydroxyapatite Impregnated Chitosan/κ‐Carrageenan for Bone Tissue Engineering. ChemistrySelect 2022. [DOI: 10.1002/slct.202103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iram Zia
- Inorganic Chemistry Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 India
| | - Sumbul Mirza
- Inorganic Chemistry Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 India
| | - Abdur Rehman
- Department of Zoology Aligarh Muslim University Aligarh 202002 India
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 India
| |
Collapse
|
4
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
5
|
Prabakaran S, Rajan M. The osteogenic and bacterial inhibition potential of natural and synthetic compound loaded metal–ceramic composite coated titanium implant for orthopedic applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02363b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Schematic illustration of the preparation, electrophoretic deposition, antibacterial and osteogenic bone regeneration abilities of the MHAP/ChN/GGe/GTN composite. Where, the green colored shape with red, yellow and blue spheres indicates the GGe.
Collapse
Affiliation(s)
- Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
6
|
Zia I, Jolly R, Mirza S, Umar MS, Owais M, Shakir M. Hydroxyapatite Nanoparticles Fortified Xanthan Gum-Chitosan Based Polyelectrolyte Complex Scaffolds for Supporting the Osteo-Friendly Environment. ACS APPLIED BIO MATERIALS 2020; 3:7133-7146. [PMID: 35019373 DOI: 10.1021/acsabm.0c00948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle-reinforced polymer-based scaffolding matrices as artificial bone-implant materials are potential suitors for bone regenerative medicine as they simulate the native bone. In the present work, a series of bioinspired, osteoconductive tricomposite scaffolds made up of nano-hydroxyapatite (NHA) embedded xanthan gum-chitosan (XAN-CHI) polyelectrolyte complex (PEC) are explored for their bone-regeneration potential. The Fourier transform infrared spectroscopy studies confirmed complex formation between XAN and CHI and showed strong interactions between the NHA and PEC matrix. The X-ray diffraction studies indicated regulation of the nanocomposite (NC) scaffold crystallinity by the physical cues of the PEC matrix. Further results exhibited that the XAN-CHI/NHA5 scaffold, with a 50/50 (polymer/NHA) ratio, has optimized porous structure, appropriate compressive properties, and sufficient swelling ability with slower degradation rates, which are far better than those of CHI/NHA and other XAN-CHI/NHA NC scaffolds. The simulated body fluid studies showed XAN-CHI/NHA5 generated apatite-like surface structures of a Ca/P ratio ∼1.66. Also, the in vitro cell-material interaction studies with MG-63 cells revealed that relative to the CHI/NHA NC scaffold, the cellular viability, attachment, and proliferation were better on XAN-CHI/NHA scaffold surfaces, with XAN-CHI/NHA5 specimens exhibiting an effective increment in cell spreading capacity compared to XAN-CHI/NHA4 and XAN-CHI/NHA6 specimens. The presence of an osteo-friendly environment is also indicated by enhanced alkaline phosphatase expression and protein adsorption ability. The higher expression of extracellular matrix proteins, such as osteocalcin and osteopontin, finally validated the induction of differentiation of MG-63 cells by tricomposite scaffolds. In summary, this study demonstrates that the formation of PEC between XAN and CHI and incorporation of NHA in XAN-CHI PEC developed tricomposite scaffolds with robust potential for use in bone regeneration applications.
Collapse
Affiliation(s)
- Iram Zia
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sumbul Mirza
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Molecular Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
7
|
Development of nano-tricalcium phosphate/polycaprolactone/platelet-rich plasma biocomposite for bone defect regeneration. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Mirza S, Jolly R, Zia I, Saad Umar M, Owais M, Shakir M. Bioactive Gum Arabic/κ-Carrageenan-Incorporated Nano-Hydroxyapatite Nanocomposites and Their Relative Biological Functionalities in Bone Tissue Engineering. ACS OMEGA 2020; 5:11279-11290. [PMID: 32478215 PMCID: PMC7254512 DOI: 10.1021/acsomega.9b03761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/03/2020] [Indexed: 06/01/2023]
Abstract
The present frontiers of bone tissue engineering are being pushed by novel biomaterials that exhibit phenomenal biocompatibility and adequate mechanical strength. In this work, we fabricated a ternary system incorporating nano-hydroxyapatite (n-HA)/gum arabic (GA)/κ-carrageenan (κ-CG) with varying concentrations, i.e., 60/30/10 (CHG1), 60/20/20 (CHG2), and 60/10/30 (CHG3). A binary system with n-HA and GA was also prepared with a ratio of 60/40 (HG) and compared with the ternary system. A rapid mineralization of the apatite layer was observed for the ternary systems after incubation in simulated body fluid (SBF) for 15 days as corroborated by scanning electron microscopy (SEM). CHG2 exhibited the maximum apatite layer deposition. Further, the nanocomposites were physicochemically analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and mechanical testing. Their results revealed a substantial interaction among the components, appropriate crystallinity, and significantly enhanced compressive strength and modulus for the ternary nanocomposites. The greatest mechanical strength was achieved by the scaffold containing equal amounts of GA and κ-CG. The cytotoxicity was evaluated by culturing osteoblast-like MG63 cells, which exhibited the highest cell viability for the CHG2 nanocomposite system. It was further supported by confocal microscopy, which revealed the maximum cell proliferation for the CHG2 scaffold. In addition, enhanced antibacterial activity, protein adsorption, biodegradability, and osteogenic differentiation were observed for the ternary nanocomposites. Osteogenic gene markers, such as osteocalcin (OCN), osteonectin (ON), and osteopontin (OPN), were present in higher quantities in the CHG2 and CHG3 nanocomposites as confirmed by western blotting. These results substantiated the pertinence of n-HA-, GA-, and κ-CG-incorporated ternary systems to bone implant materials.
Collapse
Affiliation(s)
- Sumbul Mirza
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Reshma Jolly
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Iram Zia
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Molecular
Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Molecular
Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:411-423. [DOI: 10.1016/j.msec.2019.02.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
|
10
|
Zia I, Mirza S, Jolly R, Rehman A, Ullah R, Shakir M. Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: A ternary nanocomposite for bone tissue engineering. Int J Biol Macromol 2019; 124:88-101. [DOI: 10.1016/j.ijbiomac.2018.11.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/23/2018] [Accepted: 11/11/2018] [Indexed: 12/23/2022]
|
11
|
Zhang X, Yin X, Luo J, Zheng X, Wang H, Wang J, Xi Z, Liao X, Machuki JO, Guo K, Gao F. Novel Hierarchical Nitrogen-Doped Multiwalled Carbon Nanotubes/Cellulose/Nanohydroxyapatite Nanocomposite As an Osteoinductive Scaffold for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2018; 5:294-307. [PMID: 33405875 DOI: 10.1021/acsbiomaterials.8b00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials based on hybrid scaffolds have shown a high potential to promote osteointegration and bone regeneration. In this study, a novel nanocomposite scaffold was synthesized via a cross-linking/hydrothermal/freeze-drying method, resulting in layer-by-layer structures with functional and structural properties mimicking the natural bone. The hierarchical structures of the scaffold were reinforced with nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs), cellulose, and nanohydroxyapatite. The N-MWCNT/Cel/nHA scaffolds were characterized and evaluated in terms of structure, morphology, biocompatibility, cellular responses, and bone repair efficiency in vivo. The resulting scaffolds showed that incorporation of 1 wt % N-MWCNTs into the hybrid scaffold with micropores (∼5 μm) significantly improved its mechanical properties, although the surface morphology of the scaffold tended to be rough and porous. Importantly, the resulting scaffolds supported in vitro cellular attachment, proliferation, viability, and mineralization of bone mesenchymal stem cells (BMSCs). On the other hand, incorporation of N-MWCNTs into the scaffold induced preferential differentiation of BMSCs to osteogenic lineage accompanied by increased alkaline phosphatase activity and expression of key osteogenic genes. Furthermore, 12 weeks after implantation, the 1%N-MWCNT/Cel/nHA porous scaffolds successfully cicatrized a distal femoral condyle critical size defect in rabbit without obvious inflammatory responses, as indicated by the results of the Micro-CT and histological analyses. In vitro and in vivo experiments confirmed that the scaffolds not only improved the interface bonding with bone tissue but also accelerated the new bone formation and regeneration by up-regulating signaling molecules that are involved in cell proliferation and differentiation. These results indicated that the novel N-MWCNT/Cel/nHA scaffold is an efficient platform for osteogenesis research and bone regeneration medicine.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Xianyong Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,College of Clinical Medical Science, Taishan Medical University, Taian 271000, Shangdong, China
| | - Jianjun Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Xin Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Huiying Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Zhongqian Xi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Kaijin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.,Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou 221002, Jiangsu China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
12
|
Synergistic combination of natural bioadhesive bael fruit gum and chitosan/nano-hydroxyapatite: A ternary bioactive nanohybrid for bone tissue engineering. Int J Biol Macromol 2018; 119:215-224. [PMID: 30036627 DOI: 10.1016/j.ijbiomac.2018.07.128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/20/2023]
Abstract
In this work, we have explored the polysaccharide nature of bael fruit gum (BFG) motivated from the current findings about the substantial role of the polysaccharides in bone tissue engineering. The nanocomposite scaffold (CSH-BFG) was prepared by blending BFG, nano-hydroxyapatite (n-HA) and chitosan (CS) by co-precipitation approach and compared with n-HA and CS binary system (CSH). The analysis of different properties was carried out by SEM, TEM, FTIR, XRD and mechanical testing. The CSH-BFG scaffolds revealed a rough morphology and uniform distribution of particles along with strong chemical interactions among different components compared to the CSH scaffold. The incorporation of BFG in the scaffold resulted in significant increase of the compressive strength, compressive modulus, protein adsorption, biodegradation and swelling behaviour. The ternary system exhibited superior antibacterial activity against different bacterial pathogens compared to the binary system. The in vitro biomineralization ability was elucidated from the formation of thick apatite layer complementing the result of ARS study in the CSH-BFG nanocomposite. Our findings also revealed that BFG reinforced CSH nanocomposite exhibited enhanced cell adhesion and proliferation, osteogenic differentiation along with phenomenal cytocompatibility. Overall, our results signified that the fabricated CSH-BFG nanocomposite carries enormous potential to be applied in the bone remodelling procedures.
Collapse
|