1
|
Novel rGO@Fe3O4 nanostructures: An active electrocatalyst for hydrogen evolution reaction in alkaline media. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Arya Gopal S, Edathiparambil Poulose A, Sudakar C, Muthukrishnan A. Kinetic Insights into the Mechanism of Oxygen Reduction Reaction on Fe 2O 3/C Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44195-44206. [PMID: 34515460 DOI: 10.1021/acsami.1c10114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since the inception of cobalt phthalocyanine for oxygen reduction reaction (ORR), non-platinum group metals have been the central focus in the area of fuel-cell electrocatalysts. Besides Fe-Nx active sites, a large variety of species are formed during the pyrolysis, but studies related to their ORR activity have been given less importance in the literature. Fe2O3 is one among them, and this study describes the role of Fe2O3 in the ORR. The Fe2O3 is carefully synthesized on various carbon supports and characterized using X-ray photoelectron spectroscopy (XPS) spectra, high-resolution transmission electron microscopy (HRTEM) images, and surface area analysis. The characterization techniques reveal that the Fe2O3 nanoparticles are present in the pores of the carbon supports, having a particle size ranging from 4 to 15 nm. The current density of the ORR on Fe2O3/C catalysts is increased compared with bare carbon supports, as discerned from the rotating ring-disk electrode (RRDE) voltammetry experiments, demonstrating the role of size-confined Fe2O3 nanoparticles. The overall number of electrons in the ORR is increased by the introduction of Fe2O3 on the carbon support. Based on the kinetic analysis, the ORR on Fe2O3/C follows a pseudo-4-electron or 2+2-electron ORR, where the first 2-electron ORR to H2O2 and second 2-electron H2O2 reduction reaction (HPRR) to H2O are assigned to the graphitic carbon (carbon defects) and Fe2O3 active sites, respectively. Theoretical studies indicate that the role of Fe2O3 is to decrease the free energy of O2 adsorption and reduce the energy barrier for the reduction of *OOH to OH-. The onset potential estimated from the free energy diagram is 0.42 V, matching with the HPRR activity demonstrated using the potential-dependent rate constants plot. Fe2O3/C shows higher stability by retaining 95% of the initial activity even after 20 000 cycles.
Collapse
Affiliation(s)
- S Arya Gopal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala (P.O.), Vithura 695551, Kerala, India
| | - Anuroop Edathiparambil Poulose
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala (P.O.), Vithura 695551, Kerala, India
| | - Chandran Sudakar
- Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Azhagumuthu Muthukrishnan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala (P.O.), Vithura 695551, Kerala, India
| |
Collapse
|
3
|
Qin H, He Y, Xu P, Huang D, Wang Z, Wang H, Wang Z, Zhao Y, Tian Q, Wang C. Spinel ferrites (MFe 2O 4): Synthesis, improvement and catalytic application in environment and energy field. Adv Colloid Interface Sci 2021; 294:102486. [PMID: 34274724 DOI: 10.1016/j.cis.2021.102486] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
To develop efficient catalysts is one of the major ways to solve the energy and environmental problems. Spinel ferrites, with the general chemical formula of MFe2O4 (where M = Mg2+, Co2+, Ni2+, Zn2+, Fe2+, Mn2+, etc.), have attracted considerable attention in catalytic research. The flexible position and valence variability of metal cations endow spinel ferrites with diverse physicochemical properties, such as abundant surface active sites, high catalytic activity and easy to be modified. Meanwhile, their unique advantages in regenerating and recycling on account of the magnetic performances facilitate their practical application potential. Herein, the conventional as well as green chemistry synthesis of spinel ferrites is reviewed. Most importantly, the critical pathways to improve the catalytic performance are discussed in detail, mainly covering selective doping, site substitution, structure reversal, defect introduction and coupled composites. Furthermore, the catalytic applications of spinel ferrites and their derivative composites are exclusively reviewed, including Fenton-type catalysis, photocatalysis, electrocatalysis and photoelectro-chemical catalysis. In addition, some vital remarks, including toxicity, recovery and reuse, are also covered. Future applications of spinel ferrites are envisioned focusing on environmental and energy issues, which will be pushed by the development of precise synthesis, skilled modification and advanced characterization along with emerging theoretical calculation.
Collapse
Affiliation(s)
- Hong Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yangzhuo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China..
| | - Ziwei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Han Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zixuan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Yin Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Quyang Tian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Changlin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
4
|
Garcia-Bordejé E, Benito AM, Maser WK. Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications. Adv Colloid Interface Sci 2021; 292:102420. [PMID: 33934004 DOI: 10.1016/j.cis.2021.102420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Recently, 3D graphene aerogel has garnered a high interest aiming at benefiting of the excellent properties of graphene in devices for energy storage or environmental remediation. Hydrothermal gelation of GO dispersion is a straightforward method that offers many opportunities for tuning its properties and for processing it to devices. By adjusting hydrothermal gelation and drying conditions, it is possible to tune the density (from ~3 mg cm-3 to ~2 g cm-3), pore volume, pores size (micro to macropores), pore distribution, surface chemical polarity (hydrophobic or hydrophilic), and electrical conductivity (from ~0.5 S m-1 to S cm-1). Besides other well explored applications in energy storage or environmental remediation, graphene aerogels have excellent prospects as support for catalysis since they combine the advantages of graphene sheets (high surface area, high electrical conductivity, surface chemistry tunability, high adsorption capacity…) while circumventing their drawbacks such as difficult separation from reaction media or tendency to stacking. Compared to other 3D porous carbon materials used as catalyst support, graphene aerogels have unique porous structure. The pore walls are the thinnest to be expected for a carbon material (the thickness of monolayer graphene is 0.335 nm), hence leading to the highest exposed surface area per weight and even per volume for compacted aerogels. This has the potential to maximize the catalytic site density per reactor mass and volume while minimizing the pressure drop for continuous reactions in flow. Herein, different strategies to control the porous texture, chemical and physical properties are revised along with their processability and scalability for the implementation into different morphologies and devices. Finally, the application of graphene aerogels in the catalysis field are overviewed, giving a perspective about future directions needing further research.
Collapse
Affiliation(s)
| | - A M Benito
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, E-50018 Zaragoza, Spain
| | - W K Maser
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, E-50018 Zaragoza, Spain
| |
Collapse
|
5
|
Sravani B, Maseed H, Y C, Y VMR, V V S S S, Madhavi G, L SS. A Pt-free graphenaceous composite as an electro-catalyst for efficient oxygen reduction reaction. NANOSCALE 2019; 11:13300-13308. [PMID: 31287482 DOI: 10.1039/c9nr02912e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Use of Pt-based electro-catalysts for the oxygen reduction reaction (ORR) is a major hindrance in large-scale application of proton exchange membrane fuel cells (PEMFCs). Hence, new, cost-effective and high performance electro-catalysts are required for the commercial success of PEMFCs. In this work, a Pt-free magnesium oxide (MgO) decorated multi-layered reduced graphene oxide (MLGO) composite is tested as an electro-catalyst for the ORR. The ORR activity of MgO/MLGO in terms of diffusion-controlled current density is found to be superior (6.63 mA per cm2-geo) than that of in-house prepared Pt/rGO (5.96 mA per cm2-geo) and commercial Pt/C (5.02 mA per cm2-geo). The applicability of less expensive MgO/MLGO not only provides a new electro-catalyst but also provides a new direction in exploring metal oxide-based electro-catalysts for the ORR.
Collapse
Affiliation(s)
- Bathinapatla Sravani
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa - 516 005, Andhra Pradesh, India.
| | - H Maseed
- School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad - 500 046, Telangana, India.
| | - Chandrasekhar Y
- School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad - 500 046, Telangana, India.
| | - Veera Manohara Reddy Y
- Electrochemical Research Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India
| | - Srikanth V V S S
- School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad - 500 046, Telangana, India.
| | - G Madhavi
- Electrochemical Research Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India
| | - Subramanyam Sarma L
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa - 516 005, Andhra Pradesh, India.
| |
Collapse
|
6
|
Yu L, Tran DNH, Forward P, Lambert MF, Losic D. The hydrothermal processing of iron oxides from bacterial biofilm waste as new nanomaterials for broad applications. RSC Adv 2018; 8:34848-34852. [PMID: 35547056 PMCID: PMC9087643 DOI: 10.1039/c8ra07061j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Iron oxides and their hydroxides have been studied and analysed with properties of their mutual transformations under different hydrothermal conditions being indicated. Amorphous bacteria nanowires produced from biofilm waste were investigated under the influence of pH at a fixed duration (20 h) and reaction temperature (200 °C). The morphology, structure, and particle size of the transformation of hematite (α-Fe2O3) was obtained and characterised with SEM, XRD, FTIR, and particle sizer. The optimal conditions for the complete conversion of amorphous iron oxide nanowires to crystalline α-Fe2O3 is under acidic conditions where the pH is 1. The flower-like α-Fe2O3 structures have photocatalytic activity and adsorbent properties for heavy metal ions. This one-pot synthesis approach to produce α-Fe2O3 at a low cost would be greatly applicable to the recycling process of biofilm waste in order to benefit the environment.
Collapse
Affiliation(s)
- Le Yu
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Diana N H Tran
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
- ARC Graphene Enabled Industry Transformation Hub, The University of Adelaide Adelaide SA 5005 Australia
| | | | - Martin F Lambert
- School of Civil, Environmental and Mining Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
- ARC Graphene Enabled Industry Transformation Hub, The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
7
|
Suresh R, Udayabhaskar R, Sandoval C, Ramírez E, Mangalaraja RV, Mansilla HD, Contreras D, Yáñez J. Effect of reduced graphene oxide on the structural, optical, adsorption and photocatalytic properties of iron oxide nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj00321a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effect of reduced graphene oxide on the structural and photocatalytic properties of Fe2O3 nanoparticles.
Collapse
Affiliation(s)
- R. Suresh
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción
- Chile
| | - R. Udayabhaskar
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion
- Concepción
- Chile
| | - Claudio Sandoval
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción
- Chile
| | - Eimmy Ramírez
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción
- Chile
| | - R. V. Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion
- Concepción
- Chile
| | - Héctor D. Mansilla
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Concepción
- Concepción
- Chile
| | - David Contreras
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción
- Chile
- Centre for Biotechnology, University of Concepcion
- Concepción
- Chile
| | - Jorge Yáñez
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción
- Chile
| |
Collapse
|