1
|
Edr A, Wrobel D, Krupková A, Št′astná LČ, Apartsin E, Hympánová M, Marek J, Malý J, Malý M, Strašák T. Adaptive Synthesis, Supramolecular Behavior, and Biological Properties of Amphiphilic Carbosilane-Phosphonium Dendrons with Tunable Structure. Biomacromolecules 2024; 25:7799-7813. [PMID: 39526947 PMCID: PMC11632778 DOI: 10.1021/acs.biomac.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.6-4.9 μM) and form stable and uniform micelles 6-12 nm in diameter, depending on dendron shape; the results correlate well with molecular dynamics simulations. The compounds show relatively high cytotoxicity (IC50 1.2-21.0 μM) associated with micelle formation and inversely related to the size of assembled particles. Depending on their shape, the dendrons show promising results in terms of dendriplex formation and antibacterial activity. In addition to simple amphiphilic dendrons, a fluorescently labeled analogue was also prepared and utilized as an additive visualizing the dendron's cellular uptake.
Collapse
Affiliation(s)
- Antonín Edr
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Dominika Wrobel
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Alena Krupková
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Lucie Červenková Št′astná
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Evgeny Apartsin
- Université
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Michaela Hympánová
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jan Marek
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
- Department
of Epidemiology, Military Faculty of Medicine, University of Defence, Třebešská 1575, 500 05 Hradec Králové, Czech Republic
| | - Jan Malý
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Marek Malý
- Department
of Physics, University of Jan Evangelista
Purkyně in Ústí nad Labem, 400 96 Ústí nad
Labem, Czech Republic
| | - Tomáš Strašák
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| |
Collapse
|
2
|
Hortolomeu A, Mirila DC, Georgescu AM, Rosu AM, Scutaru Y, Nedeff FM, Sturza R, Nistor ID. Retention of Phthalates in Wine Using Nanomaterials as Chemically Modified Clays with H 20, H 30, H 40 Boltron Dendrimers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2301. [PMID: 37630885 PMCID: PMC10459569 DOI: 10.3390/nano13162301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The presence of phthalic acid esters in wines presents a major risk to human health due to their very toxic metabolism. In this paper, aluminosilicate materials were used, with the aim of retaining various pollutants and unwanted compounds in wine. The pollutants tested were di-butyl and di-ethyl hexyl phthalates. They were tested and detected using the gas chromatography-mass spectrometry (CG-MS) analytical technique. Nanomaterials were prepared using sodium bentonite, and were chemically modified via impregnation using three types of Boltron dendrimers of second, third and fourth generations (NBtH20, NBtH30 and NBtH40). The synthesized nanomaterials were characterized using the Brunauer-Emmett-Teller (BET) method, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. In this paper, two aspects were addressed: the first related to the retention of phthalate-type pollutants (phthalic acid esters-PAEs) and the second related to the protein and polyphenol levels in the white wine of the Aligoté grape variety. The results obtained in this study have a major impact on PAEs in wine, especially after treatment with NBtH30 and NBtH40 (volumes of 250-500 μL/10 mL wine), with the retention of the pollutants being up to 85%.
Collapse
Affiliation(s)
- Andreea Hortolomeu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Diana-Carmen Mirila
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Ana-Maria Georgescu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Ana-Maria Rosu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| | - Yuri Scutaru
- Department of Oenology and Chemistry, Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor Street, MD-2045 Chisinau, Moldova; (Y.S.); (R.S.)
| | - Florin-Marian Nedeff
- Department of Environmental Engineering and Mechanical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania;
| | - Rodica Sturza
- Department of Oenology and Chemistry, Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor Street, MD-2045 Chisinau, Moldova; (Y.S.); (R.S.)
| | - Ileana Denisa Nistor
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 157 Calea Marasesti, 600115 Bacau, Romania; (A.H.); (D.-C.M.); (A.-M.G.); (A.-M.R.)
| |
Collapse
|
3
|
Poly(imidazolium) Carbosilane Dendrimers: Synthesis, Catalytic Activity in Redox Esterification of α,β-Unsaturated Aldehydes and Recycling via Organic Solvent Nanofiltration. Catalysts 2021. [DOI: 10.3390/catal11111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Three series of poly(ionic) carbosilane dendrimers peripherally functionalized with imidazolium groups substituted on N-3 with methyl, isopropyl and 2,6-diisopropylphenyl (Dipp) were prepared up to the 3rd generation together with model monovalent imidazolium iodides and used as N-heterocyclic carbene (NHC) precursors. Catalytic activity of model and dendritic NHCs generated in situ by deprotonation with DBU was tested in redox esterification of α,β-unsaturated aldehydes and the influence of substitution, dendrimer generation, temperature and substrate structure on the reaction outcome was evaluated. Dipp substituted NHCs showed high activity and selectivity in the reaction with primary alcohols. Effectiveness of organic solvent nanofiltration for the recycling of dendritic NHCs was demonstrated on the 1st generation Dipp substituted catalyst in model redox esterification of cinnamaldehyde with benzyl alcohol. A marked increase in both activity and selectivity in the first four reaction runs was observed and this improved performance was preserved in the following catalytic cycles.
Collapse
|
4
|
Cuřínová P, Winkler M, Krupková A, Císařová I, Budka J, Wun CN, Blechta V, Malý M, Červenková Št’astná L, Sýkora J, Strašák T. Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors. ACS OMEGA 2021; 6:15514-15522. [PMID: 34151129 PMCID: PMC8210436 DOI: 10.1021/acsomega.1c02142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
A novel approach to inducing anion transport over the dialytic membrane was proposed and successfully tested using the dihydrogen phosphate anion. The anion receptor based on isophthalamide was anchored on a dendritic skeleton, resulting in a macromolecular structure with a limited possibility to cross the dialytic membrane. The dendritic receptor was placed in a compartment separated from a mother anion solution by a membrane. The resulting anion complexation reduced the actual concentration of the anion and induced the anion transfer across the membrane. The anion concentration in mother solution decreased, while it was found to be increased in the compartment with the dendritic receptor. This phenomenon was observed using dendritic receptors with four and eight complexation sites. A detailed analysis of a series of dialytic experiments by 1H NMR spectroscopy enabled an assessment of the complexation behavior of both receptors and an evaluation of the dendritic effect on the anion complexation.
Collapse
Affiliation(s)
- Petra Cuřínová
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Maximilian Winkler
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
| | - Alena Krupková
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Sciences, Charles University, Hlavova 2030, Prague 2 128 40, Czech Republic
| | - Jan Budka
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Chang Nga Wun
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Vratislav Blechta
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
| | - Marek Malý
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Lucie Červenková Št’astná
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Jan Sýkora
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
| | - Tomáš Strašák
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| |
Collapse
|
5
|
Caminade A. Inorganic Dendrimers and Their Applications. SMART INORGANIC POLYMERS 2019:277-315. [DOI: 10.1002/9783527819140.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|