1
|
Yao S, Wang G, Batista ER, Yang P. Defect-Promoted Catalytic Conversion of Carbon Monoxide to Methanol on ThO 2 Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28864-28872. [PMID: 40310288 DOI: 10.1021/acsami.5c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The conversion of carbon monoxide (CO) to methanol (CH3OH) is an attractive process as it converts a toxic and environmentally harmful gas into a widely used industrial chemical via hydrogenation. Traditionally, this process is catalyzed by Cu-based multicomponent materials, which require high pressures and temperatures, making the process costly and environmentally unfriendly. In this article, we show that thorium dioxide (ThO2) is an attractive alternative catalyst that is earth abundant and chemically and thermally stable. Using quantum chemistry calculations based on density functional theory (DFT), we investigated the feasibility and reaction mechanism of the CO-to-CH3OH conversion catalyzed by the ThO2 (111) surface. Particular focus is given to the role of O vacancies. It is found that that the O vacancies act as catalytic centers, promoting the chemical activation of CO and H2 simultaneously and facilitating the reaction steps to form CH3OH. Based on these observations, we propose a dual-site catalytic mechanism wherein oxygen vacancies activate CO and H2 in parallel. This work demonstrates that the presence of O vacancies on the ThO2 surface improves its catalytic performance, paving the way for broader application of ThO2 catalysis to sustainable chemistry.
Collapse
Affiliation(s)
- Shukai Yao
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Gaoxue Wang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
2
|
Ding C, Yang F, Ye X, Yang C, Liu X, Tan Y, Shen Z, Duan H, Su X, Huang Y. Effect of reduction pretreatment on the structure and catalytic performance of Ir-In 2O 3 catalysts for CO 2 hydrogenation to methanol. J Environ Sci (China) 2024; 140:2-11. [PMID: 38331500 DOI: 10.1016/j.jes.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 02/10/2024]
Abstract
In2O3 has been found a promising application in CO2 hydrogenation to methanol, which is beneficial to the utilization of CO2. The oxygen vacancy (Ov) site is identified as the catalytic active center of this reaction. However, there remains a great challenge to understand the relations between the state of oxygen species in In2O3 and the catalytic performance for CO2 hydrogenation to methanol. In the present work, we compare the properties of multiple In2O3 and Ir-promoted In2O3 (Ir-In2O3) catalysts with different Ir loadings and after being pretreated under different reduction temperatures. The CO2 conversion rate of Ir-In2O3 is more promoted than that of pure In2O3. With only a small amount of Ir loading, the highly dispersed Ir species on In2O3 increase the concentration of Ov sites and enhance the activity. By finely tuning the catalyst structure, Ir-In2O3 with an Ir loading of 0.16 wt.% and pre-reduction treatment under 300°C exhibits the highest methanol yield of 146 mgCH3OH/(gcat·hr). Characterizations of Raman, electron paramagnetic resonance, X-ray photoelectron spectroscopy, CO2-temperature programmed desorption and CO2-pulse adsorption for the catalysts confirm that more Ov sites can be generated under higher reduction temperature, which will induce a facile CO2 adsorption and desorption cycle. Higher performance for methanol production requires an adequate dynamic balance among the surface oxygen atoms and vacancies, which guides us to find more suitable conditions for catalyst pretreatment and reaction.
Collapse
Affiliation(s)
- Changyu Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Ye
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chongya Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuanlong Tan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongmin Duan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiong Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Dhakshinamoorthy A, Navalón S, Primo A, García H. Selective Gas-Phase Hydrogenation of CO 2 to Methanol Catalysed by Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202311241. [PMID: 37815860 DOI: 10.1002/anie.202311241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Large scale production of green CH3 OH obtained from CO2 and green H2 is a highly wanted process due to the role of CH3 OH as H2 /energy carrier and for producing chemicals. Starting with a short summary of the advantages of metal-organic frameworks (MOFs) as catalysts in liquid-phase reactions, the present article highlights the opportunities that MOFs may offer also for some gas-phase reactions, particularly for the selective CO2 hydrogenation to CH3 OH. It is commented that there is a temperature compatibility window that combines the thermal stability of some MOFs with the temperature required in the CO2 hydrogenation to CH3 OH that frequently ranges from 250 to 300 °C. The existing literature in this area is briefly organized according to the role of MOF as providing the active sites or as support of active metal nanoparticles (NPs). Emphasis is made to show how the flexibility in design and synthesis of MOFs can be used to enhance the catalytic activity by adjusting the composition of the nodes and the structure of the linkers. The influence of structural defects and material crystallinity, as well as the role that should play theoretical calculations in models have also been highlighted.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu, India
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Ana Primo
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| |
Collapse
|
4
|
Zhang X, Kirilin AV, Rozeveld S, Kang JH, Pollefeyt G, Yancey DF, Chojecki A, Vanchura B, Blum M. Support Effect and Surface Reconstruction in In 2O 3/ m-ZrO 2 Catalyzed CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqiang Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Steve Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Joo H. Kang
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Glenn Pollefeyt
- Packaging & Specialty Plastics and Hydrocarbons R&D, Dow Benelux B.V., Terneuzen 4530 AA, The Netherlands
| | - David F. Yancey
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Adam Chojecki
- Core R&D, Dow Benelux B.V., Terneuzen 4530 AA, The Netherlands
| | - Britt Vanchura
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
|
6
|
Zhang M, Li F, Dou M, Yu Y, Chen Y. The synergetic effect of Pd, In and Zr on the mechanism of Pd/In 2O 3–ZrO 2 for CO 2 hydrogenation to methanol. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00231k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a synergistic relationship in the Pd/In2O3–ZrO2 catalyst. ZrO2 can enhance CO2 adsorption and inhibit the formation of a PdIn alloy.
Collapse
Affiliation(s)
- Minhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Fuchao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Maobin Dou
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Yingzhe Yu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Yifei Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Influence of Mn and Mg oxides on the performance of In2O3 catalysts for CO2 hydrogenation to methanol. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
9
|
Cao A, Wang Z, Li H, Nørskov JK. Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO2 Hydrogenation over In2O3 Surfaces. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ang Cao
- Department of Physics, Technical University of Denmark, Lyngby DK 2800, Denmark
| | - Zhenbin Wang
- Department of Physics, Technical University of Denmark, Lyngby DK 2800, Denmark
| | - Hao Li
- Department of Physics, Technical University of Denmark, Lyngby DK 2800, Denmark
| | - Jens K. Nørskov
- Department of Physics, Technical University of Denmark, Lyngby DK 2800, Denmark
| |
Collapse
|
10
|
Wang J, Zhang G, Zhu J, Zhang X, Ding F, Zhang A, Guo X, Song C. CO2 Hydrogenation to Methanol over In2O3-Based Catalysts: From Mechanism to Catalyst Development. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03665] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jianyang Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinbao Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fanshu Ding
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Anfeng Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Departments of Energy and Mineral Engineering and Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT Hong Kong, China
| |
Collapse
|
11
|
Yao L, Pan Y, Wu D, Li J, Xie R, Peng Z. Approaching full-range selectivity control in CO 2 hydrogenation to methanol and carbon monoxide with catalyst composition regulation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00129a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
P-Modified In2O3 with composition regulation for approaching full-range selectivity control in CO2 hydrogenation to methanol and carbon monoxide.
Collapse
Affiliation(s)
- Libo Yao
- Department of Chemical
- Biomolecular and Corrosion Engineering
- The University of Akron
- Akron
- USA
| | - Yanbo Pan
- Department of Chemical
- Biomolecular and Corrosion Engineering
- The University of Akron
- Akron
- USA
| | - Dezhen Wu
- Department of Chemical
- Biomolecular and Corrosion Engineering
- The University of Akron
- Akron
- USA
| | - Jialu Li
- Department of Chemical
- Biomolecular and Corrosion Engineering
- The University of Akron
- Akron
- USA
| | - Rongxuan Xie
- Department of Chemical
- Biomolecular and Corrosion Engineering
- The University of Akron
- Akron
- USA
| | - Zhenmeng Peng
- Department of Chemical
- Biomolecular and Corrosion Engineering
- The University of Akron
- Akron
- USA
| |
Collapse
|
12
|
Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zuo J, Chen W, Liu J, Duan X, Ye L, Yuan Y. Selective methylation of toluene using CO 2 and H 2 to para-xylene. SCIENCE ADVANCES 2020; 6:6/34/eaba5433. [PMID: 32937362 PMCID: PMC7442476 DOI: 10.1126/sciadv.aba5433] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/09/2020] [Indexed: 05/23/2023]
Abstract
Toluene methylation with methanol to produce xylene has been widely investigated. A simultaneous side reaction of methanol-to-olefin over zeolites is hard to avoid, resulting in an unsatisfactory methylation efficiency. Here, CO2 and H2 replace methanol in toluene methylation over a class of ZnZrO x -ZSM-5 (ZZO-Z5) dual-functional catalysts. Results demonstrate that the reactive methylation species (H3CO*; * represents a surface species) are generated more easily by CO2 hydrogenation than by methanol dehydrogenation. Catalytic performance tests on a fixed-bed reactor show that 92.4% xylene selectivity in CO-free products and 70.8% para-xylene selectivity in xylene are obtained on each optimized catalyst. Isotope effects of H2/D2 and CO2/13CO2 indicate that xylene product is substantially generated from toluene methylation rather than disproportionation. A mechanism involving generation of reactive methylation species on ZZO by CO2 hydrogenation and migration of the methylation species to Z5 pore for the toluene methylation to form xylene is proposed.
Collapse
Affiliation(s)
- Jiachang Zuo
- State Key Lab of Physical Chemistry of Solid Surfaces, National Engineering Lab for Green Chemical Productions of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Weikun Chen
- State Key Lab of Physical Chemistry of Solid Surfaces, National Engineering Lab for Green Chemical Productions of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia Liu
- State Key Lab of Physical Chemistry of Solid Surfaces, National Engineering Lab for Green Chemical Productions of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xinping Duan
- State Key Lab of Physical Chemistry of Solid Surfaces, National Engineering Lab for Green Chemical Productions of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Linmin Ye
- State Key Lab of Physical Chemistry of Solid Surfaces, National Engineering Lab for Green Chemical Productions of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Youzhu Yuan
- State Key Lab of Physical Chemistry of Solid Surfaces, National Engineering Lab for Green Chemical Productions of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
14
|
Huang R, Fung V, Wu Z, Jiang DE. Understanding the conversion of ethanol to propene on In2O3 from first principles. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Podrojková N, Sans V, Oriňak A, Oriňaková R. Recent Developments in the Modelling of Heterogeneous Catalysts for CO
2
Conversion to Chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.201901879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natalia Podrojková
- Department of Physical Chemistry Faculty of ScienceP.J. Šafárik University Moyzesova 11 Košice 041 54 Slovakia
| | - Victor Sans
- Institute of Advanced Materials (INAM)Universitat Jaume I Avda. Sos Baynat s/n Castellón de la Plana 12006 Spain
| | - Andrej Oriňak
- Department of Physical Chemistry Faculty of ScienceP.J. Šafárik University Moyzesova 11 Košice 041 54 Slovakia
| | - Renata Oriňaková
- Department of Physical Chemistry Faculty of ScienceP.J. Šafárik University Moyzesova 11 Košice 041 54 Slovakia
| |
Collapse
|
16
|
Effect of In2O3 on the structural properties and catalytic performance of the CuO/ZnO/Al2O3 catalyst in CO2 and CO hydrogenation to methanol. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Yao L, Shen X, Pan Y, Peng Z. Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Sorribes I, Lemos SCS, Martín S, Mayoral A, Lima RC, Andrés J. Palladium doping of In2O3 towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catal Sci Technol 2019. [DOI: 10.1039/c9cy02128k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first general heterogeneous hydrogenation of amides to amines and alcohols is performed under additive-free conditions and without product de-aromatization by applying a Pd-doped In2O3 catalyst.
Collapse
Affiliation(s)
- Iván Sorribes
- Departament de Química Física i Analítica
- Universitat Jaume I
- 12071 Castelló
- Spain
| | | | - Santiago Martín
- Departamento de Química Física
- Facultad de Ciencias
- Instituto de Ciencias de Materiales de Aragón (ICMA)
- Universidad de Zaragoza-CSIC
- 50009 Zaragoza
| | - Alvaro Mayoral
- Center for High-resolution Electron Microscopy (CħEM)
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai
- China
| | - Renata C. Lima
- Instituto de Química
- Universidade Federal de Uberlândia
- Uberlândia
- Brazil
| | - Juan Andrés
- Departament de Química Física i Analítica
- Universitat Jaume I
- 12071 Castelló
- Spain
| |
Collapse
|
19
|
Dou M, Zhang M, Chen Y, Yu Y. Mechanistic Insight into the Modification of the Surface Stability of In2O3 Catalyst Through Metal Oxide Doping. Catal Letters 2018. [DOI: 10.1007/s10562-018-2577-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Frei M, Capdevila-Cortada M, García-Muelas R, Mondelli C, López N, Stewart J, Curulla Ferré D, Pérez-Ramírez J. Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. J Catal 2018. [DOI: 10.1016/j.jcat.2018.03.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|