1
|
Jana R, Pradhan K. Shining light on the nitro group: distinct reactivity and selectivity. Chem Commun (Camb) 2024; 60:8806-8823. [PMID: 39081204 DOI: 10.1039/d4cc02582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The nitro moiety is an indispensable functional group in organic synthesis due to its facile introduction and reduction to the corresponding amines for a plethora of organic transformations. Owing to its distinct electronegative and conventional properties, it has been used for activated aromatic nucleophilic substitution (SNAr) reactions, Smiles reactions, Henry reactions, acyl anion equivalents, etc. Recently, the excellent photochemical properties of nitroarenes have been rediscovered by several groups, and their untapped potential in organic synthesis under UV or visible light irradiation has been exploited. Photoexcited nitroarenes can undergo facile reduction to amines, azo-coupling, metal-free reductive C-N coupling with boronic acids via a 1,2-boronate shift, hydrogen atom transfer (HAT), oxygen atom transfer for anaerobic oxidation of organic molecules, molecular editing via nitrene intermediates, denitrative coupling of β-nitrostyrene, radical α-alkylation of nitroalkanes, etc. They have also been used as a photolabile protecting group in medicinal chemistry and chemical biology applications. Here, we summarise the recent findings on visible-light-mediated transformations involving nitro-containing organic molecules.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
2
|
Yan CY, Wu ZW, He XY, Ma YH, Peng XR, Wang L, Yang QQ. Visible-Light-Induced Tandem Radical Brominative Addition/Cyclization of Activated Alkynes with CBr 4 for the Synthesis of 3-Bromocoumarins. J Org Chem 2023; 88:647-652. [PMID: 36480338 DOI: 10.1021/acs.joc.2c01721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-induced tandem radical brominative addition/spiro-cyclization/1,2-ester migration of activated alkynes with CBr4 is developed. This protocol features good functional group tolerance, operational simplicity, and mild reaction conditions without the use of catalysts and external additives, providing easy access to valuable 3-bromocoumarins in generally high yields.
Collapse
Affiliation(s)
- Chen-Yang Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Zheng-Wei Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Rong Peng
- GongAn County People's Hospital, No. 119, Chanling Avenue, Douhudi Town, Gongan County, Jingzhou, Hubei 434300, P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| |
Collapse
|
3
|
Shan X, Gao P, Zhang S, Jia X, Yuan Y. 2,2′‐Azodi(2‐methylbutyronitrile) (AMBN) Promoted Alkenylation of Cyclic Ethers via Radical Addition to β‐Nitrostyrenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojie Shan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Pan Gao
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Xiaodong Jia
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| |
Collapse
|
4
|
Ferko B, Marčeková M, Detková KR, Doháňošová J, Berkeš D, Jakubec P. Visible-Light-Promoted Cross-Coupling of N-Alkylpyridinium Salts and Nitrostyrenes. Org Lett 2021; 23:8705-8710. [PMID: 34723544 DOI: 10.1021/acs.orglett.1c03122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective, denitrative cross-coupling of β-nitrostyrenes with N-alkylpyridinium salts for the preparation of functionalized styrenes has been developed. The visible-light-induced reaction proceeds without any catalyst at ambient temperature. Broad in scope and tolerant to multiple functional groups, the moderately yielding transformation is orthogonal to several traditional metal-catalyzed cross-couplings.
Collapse
Affiliation(s)
- Branislav Ferko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Michaela Marčeková
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Katarína Ráchel Detková
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Jana Doháňošová
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Dušan Berkeš
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Pavol Jakubec
- Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| |
Collapse
|
5
|
Chawla R, Jaiswal S, Dutta PK, Yadav LDS. A photocatalyst-free visible-light-mediated solvent-switchable route to stilbenes/vinyl sulfones from β-nitrostyrenes and arylazo sulfones. Org Biomol Chem 2021; 19:6487-6492. [PMID: 34241618 DOI: 10.1039/d1ob01028j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalyst-free visible-light-mediated reactions, based on the presence of a visible-light-absorbing functional group in the starting material itself in order to exclude the often costly, hazardous, degradable and difficult to remove or recover photoredox catalysts, have been gaining momentum recently. We have employed this approach to develop a denitrative photocatalyst-free visible-light-mediated protocol for the arylation/sulfonylation of β-nitrostyrenes employing arylazo sulfones (bench-stable photolabile compounds) in a switchable solvent-controlled manner. Arylazo sulfones served as the aryl and sulfonyl radical precursors under blue LED irradiation for the synthesis of trans-stilbenes and (E)-vinyl sulfones in CH3CN and dioxane/H2O 2 : 1, respectively. The absence of any metal, photocatalyst and additive; excellent selectivity (E-stereochemistry) and solvent-switchability; and the use of visible light and ambient temperature are the prime assets of the developed method. Moreover, we report the first photocatalyst-free visible light-driven route to synthesize stilbenes and vinyl sulfones from readily available β-nitrostyrenes.
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Lal Dhar S Yadav
- Green Synthesis Lab, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
6
|
Tan LP, Liang D, Cheng Y, Xiao WJ, Chen JR. Visible-light-induced tandem radical addition/cyclization of 2-alkenylphenols and CBr 4 for the synthesis of 4-arylcoumarins. Org Chem Front 2021. [DOI: 10.1039/d1qo00831e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A visible-light-induced photoredox-catalyzed tandem radical addition/cyclization of 2-alkenylphenols and CBr4 is developed, providing efficient and practical access to various 4-arylcoumarins in a one-pot fashion.
Collapse
Affiliation(s)
- Li-Ping Tan
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dong Liang
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Kumar S, Shah TA, Punniyamurthy T. Recent advances in the application of tetrabromomethane in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d0qo01369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article covers the use of tetrabromomethane as mediator, catalyst and reagents for organic synthesis for the period from 2007 to 2020.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry
- DAV University
- Jalandhar-144012
- India
| | - Tariq A. Shah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Department of Chemistry
| | | |
Collapse
|
8
|
Kapoor R, Chawla R, Yadav LDS. Denitrative thiocyanation of β-nitrostyrenes through visible light photoredox catalysis: An easy access to (E)-vinyl thiocyanates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Muronetz VI, Barinova K, Kudryavtseva S, Medvedeva M, Melnikova A, Sevostyanova I, Semenyuk P, Stroylova Y, Sova M. Natural and Synthetic Derivatives of Hydroxycinnamic Acid Modulating the Pathological Transformation of Amyloidogenic Proteins. Molecules 2020; 25:E4647. [PMID: 33053854 PMCID: PMC7594092 DOI: 10.3390/molecules25204647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
This review presents the main properties of hydroxycinnamic acid (HCA) derivatives and their potential application as agents for the prevention and treatment of neurodegenerative diseases. It is partially focused on the successful use of these compounds as inhibitors of amyloidogenic transformation of proteins. Firstly, the prerequisites for the emergence of interest in HCA derivatives, including natural compounds, are described. A separate section is devoted to synthesis and properties of HCA derivatives. Then, the results of molecular modeling of HCA derivatives with prion protein as well as with α-synuclein fibrils are summarized, followed by detailed analysis of the experiments on the effect of natural and synthetic HCA derivatives, as well as structurally similar phenylacetic and benzoic acid derivatives, on the pathological transformation of prion protein and α-synuclein. The ability of HCA derivatives to prevent amyloid transformation of some amyloidogenic proteins, and their presence not only in food products but also as natural metabolites in human blood and tissues, makes them promising for the prevention and treatment of neurodegenerative diseases of amyloid nature.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Kseniya Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
| | - Sofia Kudryavtseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Maria Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Aleksandra Melnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (S.K.); (M.M.)
| | - Irina Sevostyanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
| | - Yulia Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (K.B.); (A.M.); (I.S.); (P.S.); (Y.S.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya St. 8, Bldg. 2, 119991 Moscow, Russia
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Denitrative Cross-Couplings of Nitrostyrenes. Molecules 2020; 25:molecules25153390. [PMID: 32726964 PMCID: PMC7435674 DOI: 10.3390/molecules25153390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Interestingly, β-nitrostyrenes, typically bench stable compounds, are highly promising cross-coupling partners, due to their excellent availability and well understood reactivity. In this review, we report on the discovery and advancements, in the field of stereoselective, denitrative cross-couplings of β-nitrostyrenes with miscellaneous organic reagents. The rapidly expanding field offers alternative access to a broad range of functionalized alkenes, including β-alkylated styrenes, chalcones, stilbenes, cinnamic acids, and conjugated sulfones and phosphonates. The most important mechanistic pathways are briefly discussed, to familiarize readers with the elementary reactions occurring during the coupling.
Collapse
|
11
|
Karki BS, Devi L, Pokhriyal A, Kant R, Rastogi N. Visible Light‐Induced, Metal‐Free Denitrative [3+2] Cycloaddition for Trisubstituted Pyrrole Synthesis. Chem Asian J 2019; 14:4793-4797. [DOI: 10.1002/asia.201901068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/09/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Bhupal S. Karki
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Lalita Devi
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Ruchir Kant
- Molecular & Structural Biology DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Namrata Rastogi
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
12
|
Cai XH, Zhang H, Guo H. Denitrative Coupling Reaction: A Powerful Synthetic Tool in Functional Transformation. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627114857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitro hydrocarbons as inexpensive, easily available, and relatively stable organic intermediates have aroused great attention in various functional group transformations over the past several decades. The electron-withdrawing action of the nitro group can act as a transient leaving group to efficiently transform into the other important functionalities. Nitro compounds are easily prepared through simple synthetic reactions from simple and facile starting substrates and provide an exciting opportunity for the synthesis of various valuable products. This account will review recent progress in the denitrative coupling reaction of nitroalkanes, nitroolefins, and nitroarenes under transition metalcatalyzed, transition metal-free, or visible light induced conditions.
Collapse
Affiliation(s)
- Xiao-hua Cai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Hongyan Zhang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Hui Guo
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
13
|
Zhang M, Yang L, Yang H, An G, Li G. Visible Light Mediated C(sp3)‐H Alkenylation of Cyclic Ethers Enabled by Aryl Ketone. ChemCatChem 2019. [DOI: 10.1002/cctc.201802079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| | - Liming Yang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| | - Hui Yang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
- College of Materials Science and Chemical EngineeringHarbin Engineering University Harbin 150001 P.R. China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE) School of Chemistry and Materials ScienceHeilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 P.R. China
| |
Collapse
|
14
|
Zhi P, Xi ZW, Wang DY, Wang W, Liang XZ, Tao FF, Shen RP, Shen YM. Vilsmeier–Haack reagent mediated synthetic transformations with an immobilized iridium complex photoredox catalyst. NEW J CHEM 2019. [DOI: 10.1039/c8nj05288c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of amides, nitriles, and anhydrides via reactions under the action of the visible-light-driven in situ generated Vilsmeier–Haack reagent from CBr4 in DMF.
Collapse
Affiliation(s)
- Peng Zhi
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province
- School of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- P. R. China
| | - Zi-Wei Xi
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province
- School of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- P. R. China
| | - Dan-Yan Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| | - Wei Wang
- School of Civil Engineering
- Shaoxing University
- Shaoxing
- P. R. China
| | - Xue-Zheng Liang
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province
- School of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- P. R. China
| | - Fei-Fei Tao
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province
- School of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- P. R. China
| | - Run-Pu Shen
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province
- School of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- P. R. China
| | - Yong-Miao Shen
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province
- School of Chemistry and Chemical Engineering
- Shaoxing University
- Shaoxing
- P. R. China
| |
Collapse
|
15
|
Direct synthesis of 6-sulfonylated phenanthridines via silver-catalyzed radical sulfonylation-cyclization of 2-isocyanobiphenyls. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|