1
|
Amaral LMPF, Moniz T, Silva AMN, Rangel M. Vanadium Compounds with Antidiabetic Potential. Int J Mol Sci 2023; 24:15675. [PMID: 37958659 PMCID: PMC10650557 DOI: 10.3390/ijms242115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Over the last four decades, vanadium compounds have been extensively studied as potential antidiabetic drugs. With the present review, we aim at presenting a general overview of the most promising compounds and the main results obtained with in vivo studies, reported from 1899-2023. The chemistry of vanadium is explored, discussing the importance of the structure and biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect. The spectroscopic characterization of vanadium compounds is discussed, particularly magnetic resonance methodologies, emphasizing its relevance for understanding species activity, speciation, and interaction with biological membranes. Finally, the most relevant studies regarding the use of vanadium compounds to treat diabetes are summarized, considering both animal models and human clinical trials. An overview of the main hypotheses explaining the biological activity of these compounds is presented, particularly the most accepted pathway involving vanadium interaction with phosphatase and kinase enzymes involved in the insulin signaling cascade. From our point of view, the major discoveries regarding the pharmacological action of this family of compounds are not yet fully understood. Thus, we still believe that vanadium presents the potential to help in metabolic control and the clinical management of diabetes, either as an insulin-like drug or as an insulin adjuvant. We look forward to the next forty years of research in this field, aiming to discover a vanadium compound with the desired therapeutic properties.
Collapse
Affiliation(s)
- Luísa M. P. F. Amaral
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
| | - Tânia Moniz
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André M. N. Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Rangel
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Santos CS, Rodrigues E, Ferreira S, Moniz T, Leite A, Carvalho SMP, Vasconcelos MW, Rangel M. Foliar application of 3-hydroxy-4-pyridinone Fe-chelate [Fe(mpp) 3 ] induces responses at the root level amending iron deficiency chlorosis in soybean. PHYSIOLOGIA PLANTARUM 2021; 173:235-245. [PMID: 33629743 DOI: 10.1111/ppl.13367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Iron (Fe) deficiency chlorosis (IDC) affects the growth of several crops, especially when growing in alkaline soils. The application of synthetic Fe-chelates is one of the most commonly used strategies in IDC amendment, despite their associated negative environmental impacts. In a previous work, the Fe-chelate tris(3-hydroxy-1-(H)-2-methyl-4-pyridinonate) iron(III) [Fe(mpp)3 ] has shown great potential for alleviating IDC in soybean (Glycine max) in the early stages of plant development under hydroponic conditions. Herein, its efficacy was verified under soil conditions in soybean grown from seed to full maturity. Chlorophyll levels, plant growth, root and shoot mineral accumulation (K, Mg, Ca, Na, P, Mn, Zn, Ni, and Co) and FERRITIN expression were accessed at V5 phenological stage. Compared to a commonly used Fe chelate, FeEDDHA, supplementation with [Fe(mpp)3 ] led to a 29% higher relative chlorophyll content, 32% higher root biomass, 36% higher trifoliate Fe concentration, and a twofold increase in leaf FERRITIN gene expression. [Fe(mpp)3 ] supplementation also resulted in increased accumulation of P, K, Zn, and Co. At full maturity, the remaining plants were harvested and [Fe(mpp)3 ] application led to a 32% seed yield increase when compared to FeEDDHA. This is the first report on the use of [Fe(mpp)3 ] under alkaline soil conditions for IDC correction, and we show that its foliar application has a longer-lasting effect than FeEDDHA, induces efficient root responses, and promotes the uptake of other nutrients.
Collapse
Affiliation(s)
- Carla S Santos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Elsa Rodrigues
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- GreenUPorto - Research Centre on Sustainable Agrifood Production and DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Sofia Ferreira
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Moniz
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia Leite
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Research Centre on Sustainable Agrifood Production and DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Marta W Vasconcelos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Osafune Y, Jin Y, Hirao T, Tobisu M, Amaya T. Oxovanadium(v)-catalyzed oxidative cross-coupling of enolates using O 2 as a terminal oxidant. Chem Commun (Camb) 2020; 56:11697-11700. [PMID: 33000776 DOI: 10.1039/d0cc04395h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The oxovanadium(v)-catalyzed oxidative cross-coupling of enolates using O2 as a terminal oxidant is reported, where a boron enolate and a silyl enol ether were employed as enolates. The redox behavior of V(v/iv) in this reaction under O2 was investigated by ESR and 51V NMR experiments.
Collapse
Affiliation(s)
- Yuma Osafune
- Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
4
|
Santos CS, Leite A, Vinhas S, Ferreira S, Moniz T, Vasconcelos MW, Rangel M. A combined physiological and biophysical approach to understand the ligand-dependent efficiency of 3-hydroxy-4-pyridinone Fe-chelates. PLANT DIRECT 2020; 4:e00256. [PMID: 32821874 PMCID: PMC7429444 DOI: 10.1002/pld3.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 05/11/2023]
Abstract
Ligands of the 3-hydroxy-4-pyridinone (3,4-HPO) class were considered eligible to formulate new Fe fertilizers for Iron Deficiency Chlorosis (IDC). Soybean (Glycine max L.) plants grown in hydroponic conditions and supplemented with Fe-chelate [Fe(mpp)3] were significantly greener, had increased biomass, and were able to translocate more iron from the roots to the shoots than those supplemented with an equal amount of the commercially available chelate [FeEDDHA]. To understand the influence of the structure of 3,4-HPO ligand on the role of the Fe-chelate to improve Fe-uptake, we investigated and report here the effect of Fe-chelates ([Fe(mpp)3], [Fe(dmpp)3], and [Fe(etpp)3]) in addressing IDC. Chlorosis development was assessed by measurement of morphological parameters, quantification of chlorophyll and Fe, and other micronutrient contents, as well as measurement of enzymatic activity (FCR) and gene expression (FRO2, IRT1, and Ferritin). All [Fe(3,4-HPO)3] chelates were able to provide Fe to plants and prevent IDC but with a different efficiency depending on the ligand. We hypothesize that this may be related with the distinct physicochemical characteristics of ligands and complexes, namely, the diverse hydrophilic-lipophilic balance of the three chelates. To test the hypothesis, we performed an EPR biophysical study using liposomes prepared from a soybean (Glycine3 max L.) lipid extract and spin probes. The results showed that the most effective chelate [Fe(mpp)3] shows a preferential location close to the surface while the others prefer the hydrophobic region inside the bilayer. SIGNIFICANCE STATEMENT The 3-hydroxy-4-pyridinone Fe-chelates, [Fe(mpp)3], [Fe(dmpp)3], and [Fe(etpp)3], were all able to provide Fe to plants and prevent IDC. Efficacy is dependent on the structure of the ligand. From an EPR biophysical study using spin probes and liposomes, prepared from a soybean lipid extract, we hypothesize that this may be related with the distinct preferential location close to the surface or on the hydrophobic region of the lipid bilayer. [Fe(mpp)3] provide higher amounts of Fe in the leaves.
Collapse
Affiliation(s)
- Carla S. Santos
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório AssociadoUniversidade Católica PortuguesaEscola Superior de BiotecnologiaPortoPortugal
| | - Andreia Leite
- REQUIMTELAQVDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Sílvia Vinhas
- REQUIMTELAQVDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Sofia Ferreira
- REQUIMTELAQVInstituto de Ciências Biomédicas de Abel SalazarUniversidade do PortoPortoPortugal
| | - Tânia Moniz
- REQUIMTELAQVDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Marta W. Vasconcelos
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório AssociadoUniversidade Católica PortuguesaEscola Superior de BiotecnologiaPortoPortugal
| | - Maria Rangel
- REQUIMTELAQVInstituto de Ciências Biomédicas de Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|