1
|
Varju BR, Pells JA, Wollschlaeger SA, Leznoff DB. Cadmium Dicyanoaurates and Their Reaction with Ammonia. Chempluschem 2024; 89:e202300657. [PMID: 38230838 DOI: 10.1002/cplu.202300657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Indexed: 01/18/2024]
Abstract
The synthesis and crystal structures of two anionic cadmium dicyanoaurate coordination polymers, [nBu4N]6[(Cd4Cl4)2(Au(CN)2)12][CdCl4] (TCCA) and [nBu4N]2[Cd(Au(CN)2)4], and their reaction with ammonia vapour is reported. TCCA and the isostructural [nBu4N]6[(Cd4Br4)2(Au(CN)2)12][CdBr4] form 3-D arrays with [Cd4X4]4+ (X=Cl, Br) cubane clusters linked from each octahedral Cd(II) centre by three bridging [Au(CN)2]- units. TCCA reacts with ammonia with concentrations of 1000 ppm or higher to give a product with a quantum yield of 0.88, while [nBu4N]2[Cd(Au(CN)2)4], which forms a 2-D anionic Cd[Au(CN)2]2 sheet structure with axially pendant [Au(CN)2]- units, reacts with concentrated ammonia vapour to generate Cd(NH3)2[Au(CN)2]2; this has a similar 2-D sheet structure but with axial NH3 units. Vibrational spectroscopy illustrated that the reaction of both Cd/[Au(CN)2]-based materials with ammonia proceeded by breaking Cd-NC bonds. For [nBu4N]2[Cd(Au(CN)2)4], this results in decomposition into [nBu4N][Au(CN)2] ⋅ 0.5H2O and Cd(NH3)2[Au(CN)2]2, while the reaction of ammonia with TCCA is reversible by heating the ammonia-bound sample above 110 °C. Cd[Au(CN)2]2 can be prepared by thermal removal of NH3 units from Cd(NH3)2[Au(CN)2]2.
Collapse
Affiliation(s)
- Bryton R Varju
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jefferson A Pells
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Sara A Wollschlaeger
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
2
|
Zhivkova T, Culita DC, Abudalleh A, Dyakova L, Mocanu T, Madalan AM, Georgieva M, Miloshev G, Hanganu A, Marinescu G, Alexandrova R. Homo- and heterometallic complexes of Zn(II), {Zn(II)Au(I)}, and {Zn(II)Ag(I)} with pentadentate Schiff base ligands as promising anticancer agents. Dalton Trans 2023; 52:12282-12295. [PMID: 37574873 DOI: 10.1039/d3dt01749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Two families of homo- and heterometallic complexes, [Zn2L1(μ-OH)(H2O)2](ClO4)2, [Zn2L2(μ-OH)(H2O)2](ClO4)2, [Zn2L3(μ-OH)(H2O)2](ClO4)2, 1∞[{L1Zn2(μ-OH)}{μ-[Ag(CN)2]}](ClO4), [{L1Zn2(μ-OH)}2{μ-[Au(CN)2]}{[Au(CN)2]2}](ClO4)·H2O, 1∞[{L2Zn2(μ3-OH)}2(H2O){μ-[Ag(CN)2]}](ClO4)3·THF·0.5MeOH, 1∞[{L2Zn2(μ3-OH)}2(H2O){μ-[Au(CN)2]}](ClO4)3·THF·H2O, and 1∞[{L3Zn2(μ-OH)}{μ-[Ag(CN)2]}][Ag(CN)2]·H2O, respectively, have been synthesized and characterized. The Schiff bases used as ligands were obtained by condensation reactions of 2,6-diformyl-p-cresol with N,N-dimethyl-ethylenediamine (HL1), 2-aminomethyl-pyridine (HL2), and 2-aminoethyl-pyridine (HL3), respectively. The cytotoxic/cytostatic and genotoxic effects in cultured human MCF-7 (luminal type A breast cancer), MDA-MB-231 (triple negative breast cancer), HeLa (cervical carcinoma), and Lep-3 (non-tumor embryonal fibroblastoid cells) were studied. The investigations were performed by thiazolyl blue tetrazolium bromide test (MTT test), neutral red uptake cytotoxicity assay, crystal violet staining, hematoxylin and eosin staining, double staining with acridine orange and propidium iodide, AnnexinV/FITC, and Comet assay in short-term experiments (24-72 h, with monolayer cell cultures) as well as by 3D colony-forming method in long-term experiments (28 days, with 3D cancer cell colonies). The results obtained revealed that: (i) applied at a concentration range of 0.1-100 μg mL-1, the compounds investigated decrease in a time- and concentration-dependent manner the viability and/or proliferation of the treated cells; (ii) complexes of {Zn(II)Au(I)} show relatively higher cytotoxic/genotoxic activity and antitumor potential as compared to {Zn(II)Ag(I)}; (iii) some of the complexes demonstrate more pronounced cytotoxic potential than commercially available antitumor agents cisplatin, oxaliplatin, and epirubicin.
Collapse
Affiliation(s)
- Tania Zhivkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| | - Daniela C Culita
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Abedulkadir Abudalleh
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| | - Lora Dyakova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 23, Sofia 1113, Bulgaria
| | - Teodora Mocanu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Augustin M Madalan
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
| | - Milena Georgieva
- Institute of Molecular Biology "Roumen Tsanev", Acad. Georgi Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - George Miloshev
- Institute of Molecular Biology "Roumen Tsanev", Acad. Georgi Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Anamaria Hanganu
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
- "C.D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, Splaiul Independentei 202B, Bucharest, Romania
| | - Gabriela Marinescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| |
Collapse
|
3
|
Aydın A, Korkmaz N, Kısa D, Türkmenoğlu B, Karadağ A. Dicyanoargentate(I)‐based complexes induced in vivo tumor inhibition by activating apoptosis‐related pathways. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Aydın
- Department of Basic Medical Science, Faculty of Medicine Yozgat Bozok University Yozgat Türkiye
| | - Nesrin Korkmaz
- Department of Basic Sciences and Health Hemp Research Institute, Yozgat Bozok University Yozgat Türkiye
| | - Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science Bartin University Bartin Türkiye
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy Erzincan Binali Yıldırım University Türkiye
| | - Ahmet Karadağ
- Department of Chemistry, Science and Art Faculty Yozgat Bozok University Yozgat Türkiye
| |
Collapse
|
4
|
New dinuclear cyanido complexes with amine alcohol ligand: synthesis, characterization and biotechnological application potential. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Martín-Encinas E, Selas A, Palacios F, Alonso C. The design and discovery of topoisomerase I inhibitors as anticancer therapies. Expert Opin Drug Discov 2022; 17:581-601. [PMID: 35321631 DOI: 10.1080/17460441.2022.2055545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cancer has been identified as one of the leading causes of death worldwide. The biological target of some anticancer agents is topoisomerase I, an enzyme involved in the relaxation of supercoiled DNA. The synthesis of new compounds with antiproliferative effect and behaving as topoisomerase I inhibitors has become an active field of research. Depending on their mechanism of inhibition, they can be classified as catalytic inhibitors or poisons. AREAS COVERED This review article summarizes the state of the art for the development of selective topoisomerase I inhibitors. Collected compounds showed inhibition of the enzyme, highlighting those approved for clinical use, the combination therapies developed, as well as related drawbacks and future focus. EXPERT OPINION Research related to topoisomerase I inhibitors in cancer therapy started with camptothecin (CPT). This compound was first selected as a good anticancer agent and then topoisomerase I was identified as its therapeutic target. Derivatives of CPT irinotecan, topotecan, and belotecan are the only clinically approved inhibitors. Currently, their limitations are being addressed by different stretegies. Future studies should focus not only on developing other active molecules but also on improving the bioavailability and pharmacokinetics of potent synthetic derivatives.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Asier Selas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| |
Collapse
|
6
|
Bioactivity and molecular docking studies of some nickel complexes: New analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. Bioorg Chem 2020; 101:104066. [DOI: 10.1016/j.bioorg.2020.104066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 01/09/2023]
|
7
|
Karadağ A, Korkmaz N, Aydın A, Akbaş H, Tekin Ş, Yerli Y, Şen F. Metalo components exhibiting significant anticancer and antibacterial properties: a novel sandwich-type like polymeric structure. Sci Rep 2020; 10:12472. [PMID: 32719357 PMCID: PMC7385626 DOI: 10.1038/s41598-020-69416-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023] Open
Abstract
Four new dicyanoargentate(I)-based complexes 1-4 were synthesized from certain metal ions with a tetradentate ligand [N, N-bis (2-hydroxyethyl) -ethylenediamine; N-bishydeten] and determined by diverse procedures (elemental, thermal, FT-IR, ESI-MS for 1-3 and, magnetic susceptibility and EPR for 1, and 2) including crystal analysis of 4. The crystal method revealed that complex 4 has a sandwich-type like polymeric chemical structure with layers formed by [Cd(N-bishydeten)2]2+ cations and [Ag(CN)2]- anions. The complexes were further characterized by fluorescence and UV spectroscopy to determine their physicochemical features. The complexes displayed a DNA binding activity within the same range as found for cisplatin, in addition to their strong stability in the presence of the physiological buffer system. The complexes were also investigated for pharmacological properties like interaction with DNA/Bovine serum albumin, anticancer and antibacterial activities. Physicochemical studies of DNA with the complexes suggested that the interaction mode between them are possibly both intercalative and groove binding types. These spectroscopic measurements also show that there may be a binding tendency between BSA and the complexes via hydrogen or Van der Waals bonds. The viability tests demonstrated that all the complexes exhibited antibacterial (1-4) and anticancer effects (2-4) toward ten diverse bacterial strains and three tumor cells (HT-29 colon adenocarcinoma, HeLa cervical cancer, and C6 glioma), respectively.
Collapse
Affiliation(s)
- Ahmet Karadağ
- Department of Chemistry, Faculty of Arts and Sciences, Yozgat Bozok University, 66200, Yozgat, Turkey.
| | - Nesrin Korkmaz
- Department of Biotechnology, Faculty of Science, Bartın University, 74100, Bartın, Turkey
| | - Ali Aydın
- Department of Basic Medical Science, Faculty of Medicine, Bozok University, 66200, Yozgat, Turkey
| | - Hüseyin Akbaş
- Department of Chemistry, Faculty of Art and Science, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Şaban Tekin
- TÜBİTAK MRC Genetic Engineering and Biotechnology Institute, 41470, Gebze, Turkey
- Department of Basic Medical Sciences, Medical Biology, Faculty of Medicine, University of Health Sciences, 34668, Istanbul, Turkey
| | - Yusuf Yerli
- Physics Department, Art and Science Faculty, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Fatih Şen
- Biochemistry Department, Sen Research Group, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|