1
|
Jung J, Kim S, Rah SH, Lee J, Shon MJ. Force-fluorescence setup for observing protein-DNA interactions under load. Methods Enzymol 2024; 694:137-165. [PMID: 38492949 DOI: 10.1016/bs.mie.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
This chapter explores advanced single-molecule techniques for studying protein-DNA interactions, particularly focusing on Replication Protein A (RPA) using a force-fluorescence setup. It combines magnetic tweezers (MT) with total internal reflection fluorescence (TIRF) microscopy, enabling detailed observation of DNA behavior under mechanical stress. The chapter details the use of DNA hairpins and bare DNA to examine RPA's binding dynamics and its influence on DNA's mechanical properties. This approach provides deeper insights into RPA's role in DNA replication, repair, and recombination, highlighting its significance in maintaining genomic stability.
Collapse
Affiliation(s)
- Jaehun Jung
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sang-Hyun Rah
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jayil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Institute of Basic Science Center for Genomic Integrity, Ulsan, Republic of Korea
| | - Min Ju Shon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
2
|
Madariaga-Marcos J, Aldag P, Kauert DJ, Seidel R. Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions. Methods Mol Biol 2024; 2694:421-449. [PMID: 37824016 DOI: 10.1007/978-1-0716-3377-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Combining force spectroscopy and fluorescence microscopy provides a substantial improvement to the single-molecule toolbox by allowing simultaneous manipulation and orthogonal characterizations of the conformations, interactions, and activity of biomolecular complexes. Here, we describe a combined magnetic tweezers and total internal reflection fluorescence microscopy setup to carry out correlated single-molecule fluorescence spectroscopy and force/twisting experiments. We apply the setup to reveal the DNA interactions of the CRISPR-Cas surveillance complex Cascade. Single-molecule fluorescence of a labeled Cascade allows to follow the DNA association and dissociation of the protein. Simultaneously, the magnetic tweezers probe the DNA unwinding during R-loop formation by the bound Cascade complexes. Furthermore, the setup supports observation of 1D diffusion of protein complexes on stretched DNA molecules. This technique can be applied to study a vast range of protein-DNA interactions.
Collapse
Affiliation(s)
- Julene Madariaga-Marcos
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Pierre Aldag
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Dominik J Kauert
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Abstract
Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechanical interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 1-10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to magnetic tweezers including a description of the hardware, the theory behind force calibration, its spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of biological applications.
Collapse
Affiliation(s)
- David Dulin
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Cross SJ, Brown CE, Baumann CG. Transverse Magnetic Tweezers Allowing Coincident Epi-Fluorescence Microscopy on Horizontally Extended DNA. Methods Mol Biol 2022; 2476:75-93. [PMID: 35635698 DOI: 10.1007/978-1-0716-2221-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Longitudinal magnetic tweezers (L-MT) have seen wide-scale adoption as the tool of choice for stretching and twisting a single DNA molecule. They are also used to probe topological changes in DNA as a result of protein binding and enzymatic activity. However, in the longitudinal configuration, the DNA molecule is extended perpendicular to the imaging plane. As a result, it is only possible to infer biological activity from the motion of the tethered paramagnetic microsphere. Described here is a "transverse" magnetic tweezers (T-MT) geometry featuring simultaneous control of DNA extension and spatially coincident video-rate epi-fluorescence imaging. Unlike in L-MT, DNA tethers in T-MT are extended parallel to the imaging plane between two micron-sized spheres, and importantly protein targets on the DNA can be localized using fluorescent nanoparticles. The T-MT can manipulate a long DNA construct at molecular extensions approaching the contour length defined by B-DNA helical geometry, and the measured entropic elasticity agrees with the wormlike chain model (force <35 pN). By incorporating a torsionally constrained DNA tether, the T-MT would allow both the relative extension and twist of the tether to be manipulated, while viewing far-red emitting fluorophore-labeled targets. This T-MT design has the potential to enable the study of DNA binding and remodeling processes under conditions of constant force and defined torsional stress.
Collapse
|
5
|
Aicart-Ramos C, Hormeno S, Wilkinson OJ, Dillingham MS, Moreno-Herrero F. Long DNA constructs to study helicases and nucleic acid translocases using optical tweezers. Methods Enzymol 2022; 673:311-358. [DOI: 10.1016/bs.mie.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Liang J, Li J, Zhong Z, Rujiralai T, Ma J. Quantifying the force in flow-cell based single-molecule stretching experiments. NANOSCALE 2021; 13:15916-15927. [PMID: 34522927 DOI: 10.1039/d1nr04748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The flow-cell based single-molecule manipulation technique has found many applications in the study of DNA mechanics and protein-DNA interactions. However, the force in these experiments has not been fully characterized and is usually limited to a moderate force regime (<25 pN). In this work, using the "tethered-bead" assay, the hydrodynamic drag of DNA has been quantitatively evaluated based on a "bead-spring chain" model. The force derived from the Brownian motion of the bead thus contains both contributions from this equivalent hydrodynamic drag of DNA and the pulling force from the tethered bead. Next, using flow-cell based DNA pulling experiments, the linear relationship between the flow rate and total hydrodynamic force on the bead-DNA system has been demonstrated to be valid over a wide force range (0-110 pN). Consequently, the force can be directly converted from the flow rate by a linear factor that can be calibrated either by the bead's Brownian motion at low flow rates or using DNA overstretching transition. Furthermore, the hydrodynamic force and torque due to the shear flow on the bead as well as the equivalent stretching force on DNA are calculated based on theoretical models with the hydrodynamic drag on DNA also considered. The calculated force-extension curves show a good agreement with the measured ones. These results offer important insights into the force in flow-cell based single-molecule stretching experiments and provide a foundation for establishing flow-cells as a simple, low-cost, yet flexible and precise tool for single-molecule force measurements over a wide force range.
Collapse
Affiliation(s)
- Jialun Liang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Jiaxi Li
- School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhensheng Zhong
- School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Thitima Rujiralai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
7
|
Balaguer FDA, Aicart-Ramos C, Fisher GL, de Bragança S, Martin-Cuevas EM, Pastrana CL, Dillingham MS, Moreno-Herrero F. CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parS. eLife 2021; 10:67554. [PMID: 34250901 PMCID: PMC8299390 DOI: 10.7554/elife.67554] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations.
Collapse
Affiliation(s)
- Francisco de Asis Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gemma Lm Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Sara de Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M Martin-Cuevas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
8
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Abstract
DNA dynamics can only be understood by taking into account its complex mechanical behavior at different length scales. At the micrometer level, the mechanical properties of single DNA molecules have been well-characterized by polymer models and are commonly quantified by a persistence length of 50 nm (~150 bp). However, at the base pair level (~3.4 Å), the dynamics of DNA involves complex molecular mechanisms that are still being deciphered. Here, we review recent single-molecule experiments and molecular dynamics simulations that are providing novel insights into DNA mechanics from such a molecular perspective. We first discuss recent findings on sequence-dependent DNA mechanical properties, including sequences that resist mechanical stress and sequences that can accommodate strong deformations. We then comment on the intricate effects of cytosine methylation and DNA mismatches on DNA mechanics. Finally, we review recently reported differences in the mechanical properties of DNA and double-stranded RNA, the other double-helical carrier of genetic information. A thorough examination of the recent single-molecule literature permits establishing a set of general 'rules' that reasonably explain the mechanics of nucleic acids at the base pair level. These simple rules offer an improved description of certain biological systems and might serve as valuable guidelines for future design of DNA and RNA nanostructures.
Collapse
|
10
|
Dos Santos Á, Fili N, Pearson DS, Hari-Gupta Y, Toseland CP. High-throughput mechanobiology: Force modulation of ensemble biochemical and cell-based assays. Biophys J 2021; 120:631-641. [PMID: 33453266 PMCID: PMC7896026 DOI: 10.1016/j.bpj.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022] Open
Abstract
Mechanobiology is focused on how the physical forces and mechanical properties of proteins, cells, and tissues contribute to physiology and disease. Although the response of proteins and cells to mechanical stimuli is critical for function, the tools to probe these activities are typically restricted to single-molecule manipulations. Here, we have developed a novel microplate reader assay to encompass mechanical measurements with ensemble biochemical and cellular assays, using a microplate lid modified with magnets. This configuration enables multiple static magnetic tweezers to function simultaneously across the microplate, thereby greatly increasing throughput. We demonstrate the broad applicability and versatility through in vitro and in cellulo approaches. Overall, our methodology allows, for the first time (to our knowledge), ensemble biochemical and cell-based assays to be performed under force in high-throughput format. This approach substantially increases the availability of mechanobiology measurements.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Fili
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - David S Pearson
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Christopher P Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
11
|
Madariaga-Marcos J, Corti R, Hormeño S, Moreno-Herrero F. Characterizing microfluidic approaches for a fast and efficient reagent exchange in single-molecule studies. Sci Rep 2020; 10:18069. [PMID: 33093484 PMCID: PMC7581773 DOI: 10.1038/s41598-020-74523-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 11/09/2022] Open
Abstract
Single-molecule experiments usually take place in flow cells. This experimental approach is essential for experiments requiring a liquid environment, but is also useful to allow the exchange of reagents before or during measurements. This is crucial in experiments that need to be triggered by ligands or require a sequential addition of proteins. Home-fabricated flow cells using two glass coverslips and a gasket made of paraffin wax are a widespread approach. The volume of the flow cell can be controlled by modifying the dimensions of the channel while the reagents are introduced using a syringe pump. In this system, high flow rates disturb the biological system, whereas lower flow rates lead to the generation of a reagent gradient in the flow cell. For very precise measurements it is thus desirable to have a very fast exchange of reagents with minimal diffusion. We propose the implementation of multistream laminar microfluidic cells with two inlets and one outlet, which achieve a minimum fluid switching time of 0.25 s. We additionally define a phenomenological expression to predict the boundary switching time for a particular flow cell cross section. Finally, we study the potential applicability of the platform to study kinetics at the single molecule level.
Collapse
Affiliation(s)
- Julene Madariaga-Marcos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Roberta Corti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | - Silvia Hormeño
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
12
|
Marin-Gonzalez A, Pastrana CL, Bocanegra R, Martín-González A, Vilhena JG, Pérez R, Ibarra B, Aicart-Ramos C, Moreno-Herrero F. Understanding the paradoxical mechanical response of in-phase A-tracts at different force regimes. Nucleic Acids Res 2020; 48:5024-5036. [PMID: 32282908 PMCID: PMC7229863 DOI: 10.1093/nar/gkaa225] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
A-tracts are A:T rich DNA sequences that exhibit unique structural and mechanical properties associated with several functions in vivo. The crystallographic structure of A-tracts has been well characterized. However, the mechanical properties of these sequences is controversial and their response to force remains unexplored. Here, we rationalize the mechanical properties of in-phase A-tracts present in the Caenorhabditis elegans genome over a wide range of external forces, using single-molecule experiments and theoretical polymer models. Atomic Force Microscopy imaging shows that A-tracts induce long-range (∼200 nm) bending, which originates from an intrinsically bent structure rather than from larger bending flexibility. These data are well described with a theoretical model based on the worm-like chain model that includes intrinsic bending. Magnetic tweezers experiments show that the mechanical response of A-tracts and arbitrary DNA sequences have a similar dependence with monovalent salt supporting that the observed A-tract bend is intrinsic to the sequence. Optical tweezers experiments reveal a high stretch modulus of the A-tract sequences in the enthalpic regime. Our work rationalizes the complex multiscale flexibility of A-tracts, providing a physical basis for the versatile character of these sequences inside the cell.
Collapse
Affiliation(s)
- Alberto Marin-Gonzalez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Rebeca Bocanegra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - J G Vilhena
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Department of Physics, University of Basel, Klingelbergstrasse 82, CH 4056 Basel, Switzerland
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
13
|
Directed manipulation of membrane proteins by fluorescent magnetic nanoparticles. Nat Commun 2020; 11:4259. [PMID: 32848156 PMCID: PMC7450064 DOI: 10.1038/s41467-020-18087-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 01/19/2023] Open
Abstract
The plasma membrane is the interface through which cells interact with their environment. Membrane proteins are embedded in the lipid bilayer of the plasma membrane and their function in this context is often linked to their specific location and dynamics within the membrane. However, few methods are available to manipulate membrane protein location at the single-molecule level. Here, we use fluorescent magnetic nanoparticles (FMNPs) to track membrane molecules and to control their movement. FMNPs allow single-particle tracking (SPT) at 10 nm and 5 ms spatiotemporal resolution, and using a magnetic needle, we pull membrane components laterally with femtonewton-range forces. In this way, we drag membrane proteins over the surface of living cells. Doing so, we detect barriers which we could localize to the submembrane actin cytoskeleton by super-resolution microscopy. We present here a versatile approach to probe membrane processes in live cells via the magnetic control of membrane protein motion. Membrane proteins are embedded in the lipid bilayer of the plasma membrane and their function in this context is often linked to their specific location and dynamics within the membrane. Here authors report the use of fluorescent magnetic nanoparticles to track membrane molecules and to manipulate their movement and pull membrane components laterally through the membrane with femtonewton-range forces.
Collapse
|
14
|
Abstract
Single-molecule techniques have been used successfully to visualize real-time enzymatic activities, revealing transient complex properties and heterogeneity of various biological events. Especially, conventional force spectroscopy including optical tweezers and magnetic tweezers has been widely used to monitor change in DNA length by enzymes with high spatiotemporal resolutions of ~ nanometers and ~ milliseconds. However, DNA metabolism results from coordination of a number of components during the processes, requiring efficient monitoring of a complex of proteins catalyzing DNA substrates. In this min-review, we will introduce a simple and multiplexed single-molecule assay to detect DNA substrates catalyzed by enzymes with high-throughput data collection. We conclude with a perspective of possible directions that enhance capability of the assay to reveal complex biological events with higher resolution.
Collapse
Affiliation(s)
- Ryanggeun Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Keunsang Yang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
| |
Collapse
|
15
|
Sample preparation method to improve the efficiency of high-throughput single-molecule force spectroscopy. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00097-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
Inefficient sample preparation methods hinder the performance of high-throughput single-molecule force spectroscopy (H-SMFS) for viscous damping among reactants and unstable linkage. Here, we demonstrated a sample preparation method for H-SMFS systems to achieve a higher ratio of effective target molecules per sample cell by gas-phase silanization and reactant hydrophobization. Digital holographic centrifugal force microscopy (DH-CFM) was used to verify its performance. The experimental result indicated that the DNA stretching success ratio was improved from 0.89% to 13.5%. This enhanced efficiency preparation method has potential application for force-based DNA stretching experiments and other modifying procedures.
Collapse
|
16
|
Madariaga-Marcos J, Pastrana CL, Fisher GL, Dillingham MS, Moreno-Herrero F. ParB dynamics and the critical role of the CTD in DNA condensation unveiled by combined force-fluorescence measurements. eLife 2019; 8:43812. [PMID: 30907359 PMCID: PMC6433461 DOI: 10.7554/elife.43812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/09/2019] [Indexed: 02/04/2023] Open
Abstract
Bacillus subtilis ParB forms multimeric networks involving non-specific DNA binding leading to DNA condensation. Previously, we found that an excess of the free C-terminal domain (CTD) of ParB impeded DNA condensation or promoted decondensation of pre-assembled networks (Fisher et al., 2017). However, interpretation of the molecular basis for this phenomenon was complicated by our inability to uncouple protein binding from DNA condensation. Here, we have combined lateral magnetic tweezers with TIRF microscopy to simultaneously control the restrictive force against condensation and to visualise ParB protein binding by fluorescence. At non-permissive forces for condensation, ParB binds non-specifically and highly dynamically to DNA. Our new approach concluded that the free CTD blocks the formation of ParB networks by heterodimerisation with full length DNA-bound ParB. This strongly supports a model in which the CTD acts as a key bridging interface between distal DNA binding loci within ParB networks.
Collapse
Affiliation(s)
- Julene Madariaga-Marcos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gemma Lm Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|