1
|
Chadha A, Padhi SK, Stella S, Venkataraman S, Saravanan T. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org Biomol Chem 2024; 22:228-251. [PMID: 38050738 DOI: 10.1039/d3ob01447a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.
Collapse
Affiliation(s)
- Anju Chadha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - Selvaraj Stella
- Department of Chemistry, Sarah Tucker College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli-627007, Tamil Nadu, India.
| | - Sowmyalakshmi Venkataraman
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education & Research, Chennai, 600116, Tamil Nadu, India.
| | - Thangavelu Saravanan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
2
|
Rudzka A, Zdun B, Antos N, Montero LM, Reiter T, Kroutil W, Borowiecki P. Biocatalytic characterization of an alcohol dehydrogenase variant deduced from Lactobacillus kefir in asymmetric hydrogen transfer. Commun Chem 2023; 6:217. [PMID: 37828252 PMCID: PMC10570314 DOI: 10.1038/s42004-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Hydrogen transfer biocatalysts to prepare optically pure alcohols are in need, especially when it comes to sterically demanding ketones, whereof the bioreduced products are either essential precursors of pharmaceutically relevant compounds or constitute APIs themselves. In this study, we report on the biocatalytic potential of an anti-Prelog (R)-specific Lactobacillus kefir ADH variant (Lk-ADH-E145F-F147L-Y190C, named Lk-ADH Prince) employed as E. coli/ADH whole-cell biocatalyst and its characterization for stereoselective reduction of prochiral carbonyl substrates. Key enzymatic reaction parameters, including the reaction medium, evaluation of cofactor-dependency, organic co-solvent tolerance, and substrate loading, were determined employing the drug pentoxifylline as a model prochiral ketone. Furthermore, to tap the substrate scope of Lk-ADH Prince in hydrogen transfer reactions, a broad range of 34 carbonylic derivatives was screened. Our data demonstrate that E. coli/Lk-ADH Prince exhibits activity toward a variety of structurally different ketones, furnishing optically active alcohol products at the high conversion of 65-99.9% and in moderate-to-high isolated yields (38-91%) with excellent anti-Prelog (R)-stereoselectivity (up to >99% ee) at substrate concentrations up to 100 mM.
Collapse
Affiliation(s)
- Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Beata Zdun
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Natalia Antos
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Lia Martínez Montero
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.
| |
Collapse
|
3
|
Leena K, Gummadi SN, Chadha A. Candida parapsilosis carbonyl reductase as a tool for preliminary screening of inhibitors for alcohol dehydrogenase induced skin sensitization. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Pinto J, Chadha A, Gummadi SN. Substrate selectivity and kinetic studies of (S)-specific alcohol dehydrogenase purified from Candida parapsilosis ATCC 7330. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Pinto J, Chadha A, Gummadi SN. Purification and characterisation of (S)-specific alcohol dehydrogenase from Candida parapsilosis ATCC 7330. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Uma Mahesh VNM, Chadha A. Imine reduction by an Ornithine cyclodeaminase/μ-crystallin homolog purified from Candida parapsilosis ATCC 7330. ACTA ACUST UNITED AC 2021; 31:e00664. [PMID: 34557391 PMCID: PMC8446579 DOI: 10.1016/j.btre.2021.e00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
Novel imine reductase from yeast Candida parapsilosis purified and characterized. CpIM1 belongs to unexplored Ornithine cyclodeaminase/Mu crystallin protein family CpIM1 catalyzed stereospecific alkylamination of α-ketoacids/ketoesters. CpIM1 also reduced cyclic and aryl imines. First report on enzymatic alkylamination of α-ketoesters and reduction of arylimines.
We report a stereospecific imine reductase from Candida parapsilosis ATCC 7330 (CpIM1), a versatile biocatalyst and a rich source of highly stereospecific oxidoreductases. The recombinant gene was overexpressed in Escherichia coli and the protein CpIM1 was purified to homogeneity. This protein belongs to the Ornithine cyclodeaminase/ μ-crystallin (OCD-Mu) family of proteins which has only a few characterized members. CpIM1 catalyzed the alkylamination of α-keto acids/esters producing exclusively (S)-N-alkyl amino acids/esters e.g. N-methyl-l-alanine with > 90% conversion and > 99% enantiomeric excess (ee). The enzyme showed the highest activity for the alkylamination of pyruvate and methylamine leading to N-methyl-l-alanine with an apparent KM of 15.04 ± 2.8 mM and Vmax of 13.75 ± 1.07 μmol/min/mg. CpIM1 also catalyzed (i) the reduction of imines e.g. 2-methyl-1-pyrroline to (S)-2-methylpyrrolidine with ∼30% conversion and 75% ee and (ii) the dehydrogenation of cyclic amino acids e.g. l-Proline (as monitered by reduction of cofactor NADP+ spectrophotometrically).
Collapse
Affiliation(s)
- V N M Uma Mahesh
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.,National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
7
|
Dhoke GV, Ensari Y, Hacibaloglu DY, Gärtner A, Ruff AJ, Bocola M, Davari MD. Reversal of Regioselectivity in Zinc-Dependent Medium-Chain Alcohol Dehydrogenase from Rhodococcus erythropolis toward Octanone Derivatives. Chembiochem 2020; 21:2957-2965. [PMID: 32415803 PMCID: PMC7689849 DOI: 10.1002/cbic.202000247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 12/24/2022]
Abstract
The zinc-dependent medium-chain alcohol dehydrogenase from Rhodococcus erythropolis (ReADH) is one of the most versatile biocatalysts for the stereoselective reduction of ketones to chiral alcohols. Despite its known broad substrate scope, ReADH only accepts carbonyl substrates with either a methyl or an ethyl group adjacent to the carbonyl moiety; this limits its use in the synthesis of the chiral alcohols that serve as a building blocks for pharmaceuticals. Protein engineering to expand the substrate scope of ReADH toward bulky substitutions next to carbonyl group (ethyl 2-oxo-4-phenylbutyrate) opens up new routes in the synthesis of ethyl-2-hydroxy-4-phenylbutanoate, an important intermediate for anti-hypertension drugs like enalaprilat and lisinopril. We have performed computer-aided engineering of ReADH toward ethyl 2-oxo-4-phenylbutyrate and octanone derivatives. W296, which is located in the small binding pocket of ReADH, sterically restricts the access of ethyl 2-oxo-4-phenylbutyrate, octan-3-one or octan-4-one toward the catalytic zinc ion and thereby limits ReADH activity. Computational analysis was used to identify position W296 and site-saturation mutagenesis (SSM) yielded an improved variant W296A with a 3.6-fold improved activity toward ethyl 2-oxo-4-phenylbutyrate when compared to WT ReADH (ReADH W296A: 17.10 U/mg and ReADH WT: 4.7 U/mg). In addition, the regioselectivity of ReADH W296A is shifted toward octanone substrates. ReADH W296A has a more than 16-fold increased activity toward octan-4-one (ReADH W296A: 0.97 U/mg and ReADH WT: 0.06 U/mg) and a more than 30-fold decreased activity toward octan-2-one (ReADH W296A: 0.23 U/mg and ReADH WT: 7.69 U/mg). Computational and experimental results revealed the role of position W296 in controlling the substrate scope and regiopreference of ReADH for a variety of carbonyl substrates.
Collapse
Affiliation(s)
- Gaurao V Dhoke
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Yunus Ensari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,Kafkas University, Faculty of Engineering and Architecture, Department of Bioengineering, full address?, Kars, Turkey
| | - Dinc Yasat Hacibaloglu
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Anna Gärtner
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
8
|
Peng F, Su HH, Ou XY, Ni ZF, Zong MH, Lou WY. Immobilization of Cofactor Self-Sufficient Recombinant Escherichia coli for Enantioselective Biosynthesis of ( R)-1-Phenyl-1,2-Ethanediol. Front Bioeng Biotechnol 2020; 8:17. [PMID: 32154222 PMCID: PMC7046757 DOI: 10.3389/fbioe.2020.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
(R)-1-phenyl-1,2-ethanediol is an important synthon for the preparation of β-adrenergic blocking agents. This study identified a (2R,3R)-butanediol dehydrogenase (KgBDH) from Kurthia gibsonii SC0312, which showed high enantioselectivity for production of (R)-1-phenyl-1,2-ethanediol by reduction of 2-hydroxyacetophenone. KgBDH was expressed in a recombinant engineered strain, purified, and characterized. It showed good catalytic activity at pH 6–8 and better stability in alkaline (pH 7.5–8) than an acidic environment (pH 6.0–7.0), providing approximately 73 and 88% of residual activity after 96 h at pH 7.5 and 8.0, respectively. The maximum catalytic activity was obtained at 45°C; nevertheless, poor thermal stability was observed at >30°C. Additionally, the examined metal ions did not activate the catalytic activity of KgBDH. A recombinant Escherichia coli strain coexpressing KgBDH and glucose dehydrogenase (GHD) was constructed and immobilized via entrapment with a mixture of activated carbon and calcium alginate via entrapment. The immobilized cells had 1.8-fold higher catalytic activity than that of cells immobilized by calcium alginate alone. The maximum catalytic activity of the immobilized cells was achieved at pH 7.5, and favorable pH stability was observed at pH 6.0–9.0. Moreover, the immobilized cells showed favorable thermal stability at 25–30°C and better operational stability than free cells, retaining approximately 55% of the initial catalytic activity after four cycles. Finally, 81% yields (195 mM product) and >99% enantiomeric excess (ee) of (R)-1-phenyl-1,2-ethanediol were produced within 12 h through a fed-batch strategy with the immobilized cells (25 mg/ml wet cells) at 35°C and 180 rpm, with a productivity of approximately 54 g/L per day.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hui-Hui Su
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiao-Yang Ou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zi-Fu Ni
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Sudhakara S, Ramakrishnan C, Gromiha MM, Chadha A. New insights into the stereospecific reduction by an (S) specific carbonyl reductase from Candida parapsilosis ATCC 7330: experimental and QM/MM studies. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01170c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quantum mechanics/molecular mechanics study of an (S) specific carbonyl reductase from C. parapsilosis ATCC 7330 showing a dual kinetic response for the reduction of ketones and α-ketoesters suggests different reaction mechanisms for the same.
Collapse
Affiliation(s)
- Sneha Sudhakara
- Laboratory of Bioorganic Chemistry
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
| | - Chandrasekaran Ramakrishnan
- Protein Bioinformatics lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
| | - M. Michael Gromiha
- Protein Bioinformatics lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
| |
Collapse
|
10
|
Understanding (R) Specific Carbonyl Reductase from Candida parapsilosis ATCC 7330 [CpCR]: Substrate Scope, Kinetic Studies and the Role of Zinc. Catalysts 2019. [DOI: 10.3390/catal9090702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CpCR, an (R) specific carbonyl reductase, so named because it gave (R)-alcohols on asymmetric reduction of ketones and ketoesters, is a recombinantly expressed enzyme from Candida parapsilosis ATCC 7330. It turns out to be a better aldehyde reductase and catalyses cofactor (NADPH) specific reduction of aliphatic and aromatic aldehydes. Kinetics studies against benzaldehyde and 2,4-dichlorobenzaldehyde show that the enzyme affinity and rate of reaction change significantly upon substitution on the benzene ring of benzaldehyde. CpCR, an MDR (medium chain reductase/dehydrogenase) containing both structural and catalytic Zn atoms, exists as a dimer, unlike the (S) specific reductase (SRED) from the same yeast which can exist in both dimeric and tetrameric forms. Divalent metal salts inhibit the enzyme even at nanomolar concentrations. EDTA chelation decreases CpCR activity. However, chelation done after the enzyme is pre-incubated with the NADPH retains most of the activity implying that Zn removal is largely prevented by the formation of the enzyme-cofactor complex.
Collapse
|
11
|
Aggarwal N, Ananthathamula R, Karanam VK, Doble M, Chadha A. Understanding substrate specificity and enantioselectivity of carbonyl reductase from Candida parapsilosis ATCC 7330 (CpCR): Experimental and modeling studies. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2017; 34:940-944. [PMID: 28717803 DOI: 10.1039/c7np90028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as svetamycin B from a Streptomyces species.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
13
|
Haas J, Häckh M, Justus V, Müller M, Lüdeke S. Addition of a polyhistidine tag alters the regioselectivity of carbonyl reductase S1 from Candida magnoliae. Org Biomol Chem 2017; 15:10256-10264. [DOI: 10.1039/c7ob02666h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recombinant carbonyl reductase shows different regioselectivity with a C-terminal His-tag compared to the N-tagged enzyme toward the same triketide substrate. Highly selective synthesis of reference triketides allowed solving this conundrum.
Collapse
Affiliation(s)
- Julian Haas
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Matthias Häckh
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Viktor Justus
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences
- University of Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|