1
|
Kikuchi J, Maesaki K, Sasaki S, Wang W, Ito S, Yoshikai N. Stereoselective Synthesis of β-Alkoxy-β-amido Vinylbenziodoxoles via Iodo(III)etherification of Ynamides. Org Lett 2022; 24:6914-6918. [PMID: 36125122 DOI: 10.1021/acs.orglett.2c02570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A trans-iodo(III)etherification reaction of ynamides with benziodoxole triflate and alcohols is reported. Despite the sensitivity of ynamides and enamides toward Brønsted acid, the reaction could be successfully performed under carefully controlled conditions to afford β-alkoxy-β-amido vinylbenziodoxoles in moderate to good yields. The products could be subjected to a sequence of cross-coupling via C-I(III) bond cleavage and electrophilic halogenation of the resulting α-alkoxyenamides, allowing for the preparation of densely functionalized esters.
Collapse
Affiliation(s)
- Jun Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kaito Maesaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shuma Sasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Weifan Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Song H, Sun J, LÜ M, Liu Y, Wei B. Trifluoromethyl Sulfonic Anhydride Mediated Addition of Pyridine with Ynamides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Tan JF, Bormann CT, Severin K, Cramer N. Chemo- and regio-divergent access to fluorinated 1-alkyl and 1-acyl triazenes from alkynyl triazenes. Chem Sci 2022; 13:3409-3415. [PMID: 35432853 PMCID: PMC8943902 DOI: 10.1039/d2sc00294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
The 1,1,2,2-tetrafluoroethylene unit is a prevalent pattern in bioactive molecules and functional materials. Despite being in principle a straightforward strategy to access this motif, the direct tetrafluorination of alkynes involves...
Collapse
Affiliation(s)
- Jin-Fay Tan
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| | - Carl Thomas Bormann
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| |
Collapse
|
4
|
Electrochemical fluorosulfonylation of alkenes to access vicinal fluorinated sulfones derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Morand S, Jubault P, Bouillon JP, Couve-Bonnaire S. gem-Heteroatom-Substituted Fluoroalkenes as Mimics of Amide Derivatives or Phosphates: A Comprehensive Review. Chemistry 2021; 27:17273-17292. [PMID: 34533868 DOI: 10.1002/chem.202102548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 01/18/2023]
Abstract
gem-Heteroatom-substituted fluoroalkenes have received little attention despite their great potential in medicinal chemistry or in fine chemistry. Indeed, due to the electronic and steric similarity between the fluoroalkene moiety and the amide bond as well as the high strength of the carbon-fluorine bond, these gem-heteroatom-substituted fluoroalkenes could be envisioned as stable mimics of various important organic functions, such as phosphates, carbamates, S-thiocarbamates and ureas. We present herein an overview describing the syntheses over the last decade of heteroatom-substituted fluoroalkenes in geminal position. This review will be divided into several sections covering each the common following heteroatom: oxygen-, nitrogen-, sulfur-, phosphorus-, boron- and silicon-substituted fluoroalkenes.
Collapse
Affiliation(s)
- Solène Morand
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | | | - Samuel Couve-Bonnaire
- Normandie Université INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
6
|
Lei YR, Liang JY, Wang YJ, Chen Z. Preparation of vincinal hetero 1,2-dihalo-olefins by using aqueous hydrohalic acid. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Liao L, An R, Li H, Xu Y, Wu J, Zhao X. Catalytic Access to Functionalized Allylic
gem
‐Difluorides via Fluorinative Meyer–Schuster‐Like Rearrangement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Rui An
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Huimin Li
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yang Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jin‐Ji Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
8
|
Liao L, An R, Li H, Xu Y, Wu J, Zhao X. Catalytic Access to Functionalized Allylic
gem
‐Difluorides via Fluorinative Meyer–Schuster‐Like Rearrangement. Angew Chem Int Ed Engl 2020; 59:11010-11019. [DOI: 10.1002/anie.202003897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Rui An
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Huimin Li
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yang Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jin‐Ji Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
9
|
Dwadnia N, Lingua H, Mouysset D, Mimoun L, Siri D, Bertrand MP, Feray L. Intermolecular Addition of Carbon-Centered Radicals to Ynamides. A Regio- and Stereoselective Route to Persubstituted α-Iodo-enamides. J Org Chem 2020; 85:4114-4121. [PMID: 32069414 DOI: 10.1021/acs.joc.9b03255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rather surprisingly, C-C bond formation through "intermolecular" radical addition to internal ynamides has never been reported. Actually, ynamides are excellent acceptors for "electrophilic" carbon-centered radicals. These processes enable the introduction of functionalized alkyl chains at Cβ, groups that have not yet been introduced via the addition of organometallics. Radical carboiodination affords persubstituted α-iodo-enamides in moderate to high yield. The addition is totally stereoselective. Theoretical support to the mechanism and the scope and limitation of the reaction are discussed.
Collapse
Affiliation(s)
- Nejib Dwadnia
- Aix Marseille Univ, CNRS, ICR, Institut Chimie Radicalaire, UMR 7273, Equipes CMO et CT, Campus St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Hugo Lingua
- Aix Marseille Univ, CNRS, ICR, Institut Chimie Radicalaire, UMR 7273, Equipes CMO et CT, Campus St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Dominique Mouysset
- Aix Marseille Univ, CNRS, ICR, Institut Chimie Radicalaire, UMR 7273, Equipes CMO et CT, Campus St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Liliane Mimoun
- Aix Marseille Univ, CNRS, ICR, Institut Chimie Radicalaire, UMR 7273, Equipes CMO et CT, Campus St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, Institut Chimie Radicalaire, UMR 7273, Equipes CMO et CT, Campus St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Michèle P Bertrand
- Aix Marseille Univ, CNRS, ICR, Institut Chimie Radicalaire, UMR 7273, Equipes CMO et CT, Campus St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Laurence Feray
- Aix Marseille Univ, CNRS, ICR, Institut Chimie Radicalaire, UMR 7273, Equipes CMO et CT, Campus St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| |
Collapse
|
10
|
Zeng X, Li J, Ng CK, Hammond GB, Xu B. (Radio)fluoroclick Reaction Enabled by a Hydrogen-Bonding Cluster. Angew Chem Int Ed Engl 2018; 57:2924-2928. [PMID: 29276938 PMCID: PMC6233894 DOI: 10.1002/anie.201711341] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Indexed: 12/21/2022]
Abstract
We have developed a widely applicable nucleophilic (radio)fluoroclick reaction of ynamides with readily available and easy-to-handle KF(18 F). The reactions exhibited high functional-group tolerance and needed only an ambient atmosphere. This 18 F addition to C-C unsaturated bonds proceeded with extraordinarily high radiochemical yields.
Collapse
Affiliation(s)
- Xiaojun Zeng
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University, Shanghai 201620, China
| | - Junling Li
- Department of Diagnostic Radiology, University of Louisville, Louisville, KY 40292 USA
| | - Chin K. Ng
- Department of Diagnostic Radiology, University of Louisville, Louisville, KY 40292 USA
| | - Gerald B. Hammond
- Department of Chemistry, University of Louisville, Louisville, KY 40292 USA.,
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Zeng X, Li J, Ng CK, Hammond GB, Xu B. (Radio)fluoroclick Reaction Enabled by a Hydrogen-Bonding Cluster. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaojun Zeng
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Junling Li
- Department of Diagnostic Radiology; University of Louisville; Louisville KY 40292 USA
| | - Chin K. Ng
- Department of Diagnostic Radiology; University of Louisville; Louisville KY 40292 USA
| | - Gerald B. Hammond
- Department of Chemistry; University of Louisville; Louisville KY 40292 USA
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| |
Collapse
|