1
|
Jadhao AR, Gaikwad SS. Copper-Catalyzed Direct Thiolation of Ketones Using Sulfonohydrazides: A Synthetic Route to Benzylic Thioethers. J Org Chem 2023; 88:14078-14087. [PMID: 37699245 DOI: 10.1021/acs.joc.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A facile copper-catalyzed sustainable thiolation of ketones with sulfonohydrazides has been designed for the efficient construction of benzylic thioethers in excellent yield under mild reaction conditions. The current approach avoids the widely used thiolation reagent, thiols. The commercial availability of the base and reagents, broad substrate scope, and convenient reaction procedure make it an attractive method for benzylic thioether synthesis.
Collapse
Affiliation(s)
- Amardeep Ramprasad Jadhao
- Department of Chemistry, Late Pushpadevi Patil Arts & Science College Risod, Dist-Washim, Washim, Maharashtra 444506, India
| | | |
Collapse
|
2
|
Ali K, Chatterjee I, Panda G. Metal-free thiolation of sulfonyl hydrazone with thiophenol: synthesis of 4-thio-chroman and diarylmethyl thioethers. Org Biomol Chem 2023; 21:7447-7458. [PMID: 37667987 DOI: 10.1039/d3ob01239e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A simple, efficient, and transition metal-free approach was developed for accessing 4-thio-substituted chroman and diarylmethyl thioethers from sulfonyl hydrazones. This protocol provides straightforward access to a class of diarylmethane derivatives with good to excellent yields. This operationally simple protocol exhibited good tolerance for labile functional groups, providing biologically relevant chemical libraries. This safe and feasible route is applicable to the large-scale synthesis of 4-thio-substituted chromans, which are of great synthetic interest because of their further reaction potential.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| | - Indranil Chatterjee
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.
| | - Gautam Panda
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
3
|
Pandey AK, Chand S, Sharma AK, Singh KN. Copper-Catalyzed Thiolation of Hydrazones with Sodium Sulfinates: A Straightforward Synthesis of Benzylic Thioethers. J Org Chem 2023; 88:475-482. [PMID: 36520416 DOI: 10.1021/acs.joc.2c02451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A facile and sustainable protocol for the thiolation of hydrazones with sodium sulfinates has been developed in the presence of CuBr2 and DBU in DMF to afford diverse benzylic thioethers. Control experiments reveal a radical pathway involving a thiyl radical as a key intermediate.
Collapse
Affiliation(s)
- Anand Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
4
|
Wang Q, Zhu B, Zhang X, Shi G, Liu J, Xu Q. Direct construction of quinoxaline derivatives from vicinal diols and o‐nitroanilines via NaOH‐mediated intermolecular cascade redox and annulation reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qi Wang
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Boran Zhu
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Xiaolan Zhang
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Guojun Shi
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Jianping Liu
- Wenzhou University College of Chemistry and Materials Engineering 325035 Wenzhou CHINA
| | - Qing Xu
- Wenzhou University College of Chemistry and Materials Engineering Wenzhou University Town 325035 Wenzhou CHINA
| |
Collapse
|
5
|
Ma X, Zhu Y, Yu J, Yan R, Xie X, Huang L, Wang Q, Chang XP, Xu Q. Water oxidation by Brønsted acid-catalyzed in situ generated thiol cation: dual function of the acid catalyst leading to transition metal-free substitution and addition reactions of S-S bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo00169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented water oxidation reaction by a small organic molecule, i.e., the thiol cation generated in situ by Brønsted acid-catalyzed heterolytic cleavage of S-S bond of a disulfide, is observed...
Collapse
|
6
|
Xu B, Lin Y, Ye Y, Xu L, Xie T, Ye XY. Benzyl thioether formation merging copper catalysis. RSC Adv 2021; 12:692-697. [PMID: 35425124 PMCID: PMC8697992 DOI: 10.1039/d1ra08015f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
A novel copper-catalyzed thioetherification reaction has been developed to afford benzyl thioethers in moderate to excellent yields. Under the mild and easy-to-operate conditions, a variety of thioethers are efficiently prepared from readily available benzyl alcohols (primary, secondary, and tertiary) and thiols in the presence of Cu(OTf)2 as the Lewis acid catalysis. This C-S bond formation protocol furnishes exceptional chemoselectivity, and the preliminary mechanism studies show that the reaction should proceed through a Lewis-acid-mediated SN1-type nucleophilic attack of the carbocations formed in situ.
Collapse
Affiliation(s)
- Bing Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Li Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| |
Collapse
|
7
|
Wang Q, Zhang X, Han F, Liu J, Xu Q. Efficient Construction of 5H-1,4-Benzodiazepine Derivatives by a Catalyst-Free Direct Aerobic Oxidative Annulation Strategy. CHEMSUSCHEM 2021; 14:2866-2871. [PMID: 34057822 DOI: 10.1002/cssc.202100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/30/2021] [Indexed: 06/12/2023]
Abstract
A catalyst-free direct aerobic oxidative annulation reaction of 2-aminobenzylic amines and α-hydroxy ketones efficiently afforded versatile 5H-1,4-benzodiazepine derivatives by employing air as economic and green oxidant under mild conditions. Interestingly, solvent was found to be crucial to the reaction, so that by using acetic acid as the best solvent an efficient and practical method could be achieved, requiring no catalysts or additives at all. This method tolerates a wide range of 2-aminobenzylic amines and α-hydroxy ketones and could be scaled up to multigram synthesis and directly applied in one-step synthesis of the pharmaceutically active N-desmethylmedazepam derivatives, revealing the potential of this new method in the synthesis of 5H-1,4-benzodiazepine skeleton-based pharmaceuticals and chemicals.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xiaolan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Feng Han
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jianping Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Qing Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
8
|
Wang H, Zhao Y, Zhang F, Ke Z, Han B, Xiang J, Wang Z, Liu Z. Hydrogen-bond donor and acceptor cooperative catalysis strategy for cyclic dehydration of diols to access O-heterocycles. SCIENCE ADVANCES 2021; 7:7/22/eabg0396. [PMID: 34039607 PMCID: PMC8153714 DOI: 10.1126/sciadv.abg0396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Dehydrative cyclization of diols to O-heterocycles is attractive, but acid and/or metal-based catalysts are generally required. Here, we present a hydrogen-bond donor and acceptor cooperative catalysis strategy for the synthesis of O-heterocycles from diols in ionic liquids [ILs; e.g., 1-hydroxyethyl-3-methyl imidazolium trifluoromethanesulfonate ([HO-EtMIm][OTf])] under metal-free, acid-free, and mild conditions. [HO-EtMIm][OTf] is tolerant to a wide diol scope, shows performance even better than H2SO4, and affords a series of O-heterocycles including tetrahydrofurans, tetrahydropyrans, morpholines, dioxanes, and thioxane in high yields. Mechanism investigation indicates that the IL cation and anion serve as hydrogen-bond donor and acceptor, respectively, to activate the C─O and O─H bonds of alcohol via hydrogen bonds, which synergistically catalyze dehydrative cyclization of diols to O-heterocycles. Notably, the products could be spontaneously separated after reaction because of their immiscibility with the IL, and the IL could be recycled. This green strategy has great potential for application in industry.
Collapse
Affiliation(s)
- Huan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengang Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P. R. China
| | - Junfeng Xiang
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhenpeng Wang
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P. R. China
| |
Collapse
|
9
|
Moura IMR, Tranquilino A, Sátiro BG, Silva RO, de Oliveira-Silva D, Oliveira RA, Menezes PH. Unusual Application for Phosphonium Salts and Phosphoranes: Synthesis of Chalcogenides. J Org Chem 2021; 86:5954-5964. [PMID: 33789421 DOI: 10.1021/acs.joc.1c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel strategy for the synthesis of sulfides and selenides from phosphonium salts and thio- or selenesulfonates, commercially available compounds, is described. When phosphoranes were used in the reaction, different products were obtained. The methodology does not require the use of metals, reactive species, or anhydrous conditions to be performed.
Collapse
Affiliation(s)
- Igor M R Moura
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Arisson Tranquilino
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Barbara G Sátiro
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Ricardo O Silva
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Diogo de Oliveira-Silva
- Depto. de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09972-270 Diadema, São Paulo, Brazil
| | - Roberta A Oliveira
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Paulo H Menezes
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| |
Collapse
|
10
|
Margarita C, Villo P, Tuñon H, Dalla-Santa O, Camaj D, Carlsson R, Lill M, Ramström A, Lundberg H. Zirconium-catalysed direct substitution of alcohols: enhancing the selectivity by kinetic analysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01219c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic analysis was used as a tool for rational optimization of catalytic direct substitution of alcohols to enable selective formation of ethers, thioethers, and Friedel–Crafts alkylation products using a moisture-tolerant and commercially available Zr complex.
Collapse
Affiliation(s)
- Cristiana Margarita
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Piret Villo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Hernando Tuñon
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Oscar Dalla-Santa
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - David Camaj
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Robin Carlsson
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Malin Lill
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Anja Ramström
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|
11
|
Molybdenum (VI)-catalyzed dehydrative construction of C O and C S bonds formation via etherification and thioetherification of alcohols and thiols. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Liu H, Han F, Li H, Liu J, Xu Q. Selective construction of alkaloid scaffolds by alcohol-based direct and mild aerobic oxidative Pictet–Spengler reactions. Org Biomol Chem 2020; 18:7079-7085. [DOI: 10.1039/d0ob01549k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tetrahydro-β-carboline and β-carboline alkaloid scaffolds can be selectively obtained by direct aerobic oxidative Pictet–Spengler reactions of tryptamines with alcohols using TBN/TEMPO as the catalysts and oxygen as the oxidant under mild conditions.
Collapse
Affiliation(s)
- Haicheng Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Feng Han
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Huan Li
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Jianping Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Qing Xu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
13
|
Ma X, Yu J, Yan R, Yan M, Xu Q. Promoting Effect of Crystal Water Leading to Catalyst-Free Synthesis of Heteroaryl Thioether from Heteroaryl Chloride, Sodium Thiosulfate Pentahydrate, and Alcohol. J Org Chem 2019; 84:11294-11300. [PMID: 31393123 DOI: 10.1021/acs.joc.9b01670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is observed the crystal water in sodium thiosulfate pentahydrate (Na2S2O3·5H2O) can promote its multicomponent reaction with heteroaryl chlorides and alcohols, providing a facile, green, and specific synthesis of unsymmetrical heteroaryl thioethers via one-step formation of two C-S bonds under catalyst-, additive-, and solvent-free conditions. Mechanistic studies suggest that the crystal water in Na2S2O3·5H2O is crucial in generating the key thiol intermediates and byproduct NaHSO4, which then catalyzes the dehydrative substitution of alcohols with thiols to afford thioethers.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325035 , China.,College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China.,School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Jing Yu
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Ran Yan
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Mengli Yan
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Qing Xu
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325035 , China.,School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| |
Collapse
|
14
|
Wang Q, Lv M, Liu J, Li Y, Xu Q, Zhang X, Cao H. Efficient Synthesis of Quinazolinones by Transition-Metal-Free Direct Aerobic Oxidative Cascade Annulation of Alcohols with o-Aminoarylnitriles. CHEMSUSCHEM 2019; 12:3043-3048. [PMID: 30791215 DOI: 10.1002/cssc.201900265] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
A mild and atom-economic method was developed for direct and efficient synthesis of quinazolinones through a transition-metal-free aerobic oxidative cascade annulation reaction of widely available o-aminoarylnitriles and alcohols. Air could be employed as an effective oxidant under mild conditions, generating water as the only byproduct. Possibly owing to the "cesium effect", the water-soluble base CsOH was found to be crucial in all key steps of the reaction mechanism. Because a wide range of substrates can be used to prepare substituted quinazolinones without contamination by transition-metal residues, this method may be of interest for application in pharmaceutical synthesis. Possible reaction paths were also proposed according to control reactions.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Miao Lv
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Jianping Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Yang Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Qing Xu
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Hongen Cao
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| |
Collapse
|
15
|
Meng SS, Wang Q, Huang GB, Lin LR, Zhao JL, Chan ASC. B(C6F5)3 catalyzed direct nucleophilic substitution of benzylic alcohols: an effective method of constructing C–O, C–S and C–C bonds from benzylic alcohols. RSC Adv 2018; 8:30946-30949. [PMID: 35548750 PMCID: PMC9085633 DOI: 10.1039/c8ra05811c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
An efficient and general method of nucleophilic substitution of benzylic alcohols catalyzed by non-metallic Lewis acid B(C6F5)3 was developed. The reaction could be carried out under mild conditions and more than 35 examples of ethers, thioethers and triarylmethanes were constructed in high yields. Some bioactive organic molecules were synthesized directly using the methods. An efficient and general method of nucleophilic substitution of benzylic alcohols catalyzed by non-metallic Lewis acid B(C6F5)3 was developed.![]()
Collapse
Affiliation(s)
- Shan-Shui Meng
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qian Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Gong-Bin Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Li-Rong Lin
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jun-Ling Zhao
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|