1
|
Schaudy E, Ibañez-Redín G, Parlar E, Somoza MM, Lietard J. Nonaqueous Oxidation in DNA Microarray Synthesis Improves the Oligonucleotide Quality and Preserves Surface Integrity on Gold and Indium Tin Oxide Substrates. Anal Chem 2024; 96:2378-2386. [PMID: 38285499 PMCID: PMC10867803 DOI: 10.1021/acs.analchem.3c04166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Nucleic acids attached to electrically conductive surfaces are very frequently used platforms for sensing and analyte detection as well as for imaging. Synthesizing DNA on these uncommon substrates and preserving the conductive layer is challenging as this coating tends to be damaged by the repeated use of iodine and water, which is the standard oxidizing medium following phosphoramidite coupling. Here, we thoroughly investigate the use of camphorsulfonyl oxaziridine (CSO), a nonaqueous alternative to I2/H2O, for the synthesis of DNA microarrays in situ. We find that CSO performs equally well in producing high hybridization signals on glass microscope slides, and CSO also protects the conductive layer on gold and indium tin oxide (ITO)-coated slides. DNA synthesis on conductive substrates with CSO oxidation yields microarrays of quality approaching that of conventional glass with intact physicochemical properties.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Gisela Ibañez-Redín
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Etkin Parlar
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, Freising 85354, Germany
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising 85354, Germany
| | - Jory Lietard
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| |
Collapse
|
2
|
Kaspar F, Seeger M, Westarp S, Köllmann C, Lehmann AP, Pausch P, Kemper S, Neubauer P, Bange G, Schallmey A, Werz DB, Kurreck A. Diversification of 4′-Methylated Nucleosides by Nucleoside Phosphorylases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Felix Kaspar
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13349 Berlin, Germany
| | - Margarita Seeger
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13349 Berlin, Germany
| | - Christoph Köllmann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Anna P. Lehmann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Patrick Pausch
- Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, 35043 Marburg, Germany
| | - Sebastian Kemper
- Institute for Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, 35043 Marburg, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13349 Berlin, Germany
| |
Collapse
|
3
|
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17:908-931. [PMID: 33981365 PMCID: PMC8093555 DOI: 10.3762/bjoc.17.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past 25 years, the acceleration of achievements in the development of oligonucleotide-based therapeutics has resulted in numerous new drugs making it to the market for the treatment of various diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified oligonucleotides that have been explored for gene silencing.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Kieran Duke
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Martin Egli
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
4
|
|
5
|
Köllmann C, Sake SM, Jones PG, Pietschmann T, Werz DB. Protecting-Group-Mediated Diastereoselective Synthesis of C4'-Methylated Uridine Analogs and Their Activity against the Human Respiratory Syncytial Virus. J Org Chem 2020; 85:4267-4278. [PMID: 32036652 DOI: 10.1021/acs.joc.9b03425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adjusting the protecting group strategy, from an alkyl ether to a bidentate ketal at the carbohydrate backbone of uridine, facilitates a switchable diastereoselective α- or β-C4'/C5'-spirocyclopropanation. Using these spirocyclopropanated nucleosides as key intermediates, we synthesized a variety of C4'-methylated d-ribose and l-lyxose-configured uridine derivatives by a base-mediated ring-opening of the spirocyclopropanol moiety. Investigations of antiviral activity against the human respiratory syncytial virus were carried out for selected derivatives, showing moderate activity.
Collapse
Affiliation(s)
- Christoph Köllmann
- Technische Universität Braunschweig, Institute for Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Svenja M Sake
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institute for Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute for Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Cleaves HJ, Butch C, Burger PB, Goodwin J, Meringer M. One Among Millions: The Chemical Space of Nucleic Acid-Like Molecules. J Chem Inf Model 2019; 59:4266-4277. [PMID: 31498614 DOI: 10.1021/acs.jcim.9b00632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biology encodes hereditary information in DNA and RNA, which are finely tuned to their biological functions and modes of biological production. The central role of nucleic acids in biological information flow makes them key targets of pharmaceutical research. Indeed, other nucleic acid-like polymers can play similar roles to natural nucleic acids both in vivo and in vitro; yet despite remarkable advances over the last few decades, much remains unknown regarding which structures are compatible with molecular information storage. Chemical space describes the structures and properties of molecules that could exist within a given molecular formula or other classification system. Using structure generation methods, we explore nucleic acid analogues within the formula ranges BC3-7H5-15O2-4 and BC3-6H5-15N1-2O0-4, where B is a recognition element (e.g., a nucleobase). Other restrictions included two obligatory points of attachment for inclusion into a linear polymer and substructures predicting chemical stability. These sets contain 86,007 (CHO) and 75,309 (CHNO) compositionally isomeric structures, representing 706,568 CHO and 454,422 CHNO stereoisomers, that diversely and densely occupy this space. These libraries point toward there being large spaces of unexplored chemistry relevant to pharmacology and biochemistry and efforts to understand the origins of life.
Collapse
Affiliation(s)
- Henderson James Cleaves
- Earth-Life Science Institute , Tokyo Institute of Technology , 2-12-IE-1 Ookayama , Meguro-ku , Tokyo 152-8551 , Japan.,Institute for Advanced Study , Princeton , New Jersey 08540 , United States.,Blue Marble Space Institute for Science , 1515 Gallatin St. NW , Washington , DC 20011 , United States
| | - Christopher Butch
- Earth-Life Science Institute , Tokyo Institute of Technology , 2-12-IE-1 Ookayama , Meguro-ku , Tokyo 152-8551 , Japan.,Blue Marble Space Institute for Science , 1515 Gallatin St. NW , Washington , DC 20011 , United States.,Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Pieter Buys Burger
- Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Jay Goodwin
- Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Markus Meringer
- German Aerospace Center (DLR) , Earth Observation Center (EOC) , Münchner Straße 20 , 82234 Oberpfaffenhofen-Wessling , Germany
| |
Collapse
|
7
|
Gaweda K, Plazinski W. The systematic influence of solvent on the conformational features of furanosides. Org Biomol Chem 2019; 17:2479-2485. [PMID: 30756110 DOI: 10.1039/c9ob00043g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endo- and exo-anomeric effects are the two most recognizable stereoelectronic effects exhibited by carbohydrates. Their presence relies on the interactions between ring substituent(s) and ring oxygen atoms. Here, we report the finding of a new effect that partially controls the conformational properties of furanose rings and can be ascribed to the influence of the solvent on the electronic structure of a molecule. In contrast to anomeric effects, it is not dependent on either presence or absence of ring substituents. Its origins lie in a solvent-induced flux of atomic charges that involves atoms forming the furanose ring. This systematically changes the energy of the whole molecular system and alters the ring-distortion free energies by ∼2.5-6.5 kJ mol-1, favoring the geometries close to the twist 3T2/2T3 conformers and disfavoring the envelope OE/EO-like shapes. This intriguing effect has never been reported before, although it is expected to exist in all furanose rings. Along with more recognized stereoelectronic effects, this phenomenon contributes to a wide applicability of the two-state (north vs. south) model of pseudorotation in furanosides and, in the case of extremely flexible furanose rings, may change the preferred conformation type in comparison with the gas-phase-oriented predictions.
Collapse
Affiliation(s)
- Karolina Gaweda
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland.
| | | |
Collapse
|