1
|
Markovitsi D. On the Use of the Intrinsic DNA Fluorescence for Monitoring Its Damage: A Contribution from Fundamental Studies. ACS OMEGA 2024; 9:26826-26837. [PMID: 38947837 PMCID: PMC11209687 DOI: 10.1021/acsomega.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
The assessment of DNA damage by means of appropriate fluorescent probes is widely spread. In the specific case of UV-induced damage, it has been suggested to use the emission of dimeric photoproducts as an internal indicator for the efficacy of spermicidal lamps. However, in the light of fundamental studies on the UV-induced processes, outlined in this review, this is not straightforward. It is by now well established that, in addition to photodimers formed via an electronic excited state, photoionization also takes place with comparable or higher quantum yields, depending on the irradiation wavelength. Among the multitude of final lesions, some have been fully characterized, but others remain unknown; some of them may emit, while others go undetected upon monitoring fluorescence, the result being strongly dependent on both the irradiation and the excitation wavelength. In contrast, the fluorescence of undamaged nucleobases associated with emission from ππ* states, localized or excitonic, appearing at wavelengths shorter than 330 nm is worthy of being explored to this end. Despite its low quantum yield, it is readily detected nowadays. Its intensity decreases due to the disappearance of the reacting nucleobases and the loss of exciton coherence provoked by the presence of lesions, independently of their type. Thus, it could potentially provide valuable information about the DNA damage induced, not only by UV radiation but also by other sanitizing or therapeutic agents.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- Université Paris-Saclay, CNRS,
Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
2
|
Petropoulos V, Uboldi L, Maiuri M, Cerullo G, Martinez-Fernandez L, Balanikas E, Markovitsi D. Effect of the DNA Polarity on the Relaxation of Its Electronic Excited States. J Phys Chem Lett 2023; 14:10219-10224. [PMID: 37931204 DOI: 10.1021/acs.jpclett.3c02580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The DNA polarity, i.e., the order in which nucleobases are connected together via the phosphodiester backbone, is crucial for several biological processes. But, so far, there has not been experimental evidence regarding its effect on the relaxation of DNA electronic excited states. Here we examine this aspect for two dinucleotides containing adenine and guanine: 5'-dApdG-3' and 5'-dGpdA-3' in water. We used two different femtosecond transient absorption setups: one providing high temporal resolution and broad spectral coverage (330-650 nm) between 30 fs and 50 ps, and the other recording decays at selected wavelengths until 1.2 ns. The transient absorption spectra corresponding to the minima in the potential energy surface of the first excited state were computed by quantum chemistry methods. Our results show that the excited charge transfer state in 5'-dGpdA-3' is formed with a ∼75% higher quantum yield and exhibits slower decay (170 ± 10 ps vs 112 ± 12 ps) compared to 5'-dApdG-3'.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Lorenzo Uboldi
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva-4, Switzerland
| | - Dimitra Markovitsi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
3
|
Balanikas E, Martinez-Fernandez L, Baldacchino G, Markovitsi D. Electron Holes in G-Quadruplexes: The Role of Adenine Ending Groups. Int J Mol Sci 2021; 22:ijms222413436. [PMID: 34948235 PMCID: PMC8704496 DOI: 10.3390/ijms222413436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The study deals with four-stranded DNA structures (G-Quadruplexes), known to undergo ionization upon direct absorption of low-energy UV photons. Combining quantum chemistry calculations and time-resolved absorption spectroscopy with 266 nm excitation, it focuses on the electron holes generated in tetramolecular systems with adenine groups at the ends. Our computations show that the electron hole is placed in a single guanine site, whose location depends on the position of the adenines at the 3' or 5' ends. This position also affects significantly the electronic absorption spectrum of (G+)● radical cations. Their decay is highly anisotropic, composed of a fast process (<2 µs), followed by a slower one occurring in ~20 µs. On the one hand, they undergo deprotonation to (G-H2)● radicals and, on the other, they give rise to a reaction product absorbing in the 300-500 nm spectral domain.
Collapse
Affiliation(s)
- Evangelos Balanikas
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Lara Martinez-Fernandez
- Departamento de Química, Modúlo 13, Facultad de Ciencias and IADCHEM (Institute for Advanced Research in Chemistry), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (L.M.-F.); or (D.M.)
| | - Gérard Baldacchino
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
- Correspondence: (L.M.-F.); or (D.M.)
| |
Collapse
|
4
|
Balanikas E, Martinez-Fernandez L, Improta R, Podbevšek P, Baldacchino G, Markovitsi D. The Structural Duality of Nucleobases in Guanine Quadruplexes Controls Their Low-Energy Photoionization. J Phys Chem Lett 2021; 12:8309-8313. [PMID: 34428044 DOI: 10.1021/acs.jpclett.1c01846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guanine quadruplexes are four-stranded DNA/RNA structures composed of a guanine core (vertically stacked guanine tetrads) and peripheral groups (dangling ends and/or loops). Such a dual structural arrangement of the nucleobases favors their photoionization at energies significantly lower than the guanine ionization potential. This effect is important with respect to the oxidative DNA damage and for applications in the field of optoelectronics. Photoionization quantum yields, determined at 266 nm by nanosecond transient absorption spectroscopy, strongly depend on both the type and position of the peripheral nucleobases. The highest value (1.5 × 10-2) is found for the tetramolecular structure (AG4A)4 in which adenines are intermittently stacked on the adjacent guanine tetrads, as determined by nuclear magnetic resonance spectroscopy. Quantum chemistry calculations show that peripheral nucleobases interfere in a key step preceding electron ejection: charge separation, initiated by the population of charge transfer states during the relaxation of electronic excited states.
Collapse
Affiliation(s)
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Gérard Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Martínez-Fernández L, Esposito L, Improta R. Studying the excited electronic states of guanine rich DNA quadruplexes by quantum mechanical methods: main achievements and perspectives. Photochem Photobiol Sci 2020; 19:436-444. [DOI: 10.1039/d0pp00065e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calculations are providing more and more useful insights into the interaction between light and DNA quadruplexes.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química
- Facultad de Ciencias
- Modulo 13 Universidad Autónoma de Madrid
- Campus de Excelencia UAM-CSIC Cantoblanco
- 28049 Madrid
| | | | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini
- CNR
- I-80134 Napoli
- Italy
| |
Collapse
|
6
|
Banyasz A, Ketola T, Martínez-Fernández L, Improta R, Markovitsi D. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation. Faraday Discuss 2019; 207:181-197. [PMID: 29372211 DOI: 10.1039/c7fd00179g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.
Collapse
Affiliation(s)
- Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
7
|
Martinez-Fernandez L, Prampolini G, Cerezo J, Liu Y, Santoro F, Improta R. Solvent effect on the energetics of proton coupled electron transfer in guanine-cytosine pair in chloroform by mixed explicit and implicit solvation models. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Martínez-Fernández L, Improta R. Sequence dependence on DNA photochemistry: a computational study of photodimerization pathways in TpdC and dCpT dinucleotides. Photochem Photobiol Sci 2018; 17:586-591. [PMID: 29624198 DOI: 10.1039/c8pp00040a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The excited states involved in the main photodimerization paths in TpdC and dCpT are mapped by PCM/TD-M052X calculations, considering different dinucleotide conformers. As for TT steps, a cyclobutane pyrimidine dimer (CPD) is formed on the PES of the lowest energy exciton, delocalized over two stacked pyrimidines; 6-4 pyrimidine-pyrimidone (64-PP) adduct's formation involves instead a 5'-ter → 3'-ter charge transfer state. For dCpT, 64-PP dimerization occurs via a two-step reaction, which proceeds through an oxetane intermediate. For TpdC, instead, the final 64-PP product is obtained in a single step and it is as stable as the CPD photoproduct, explaining the relatively large yield of 64-PP found experimentally for TC steps in DNA.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80134 Naples, Italy. and LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Roberto Improta
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80134 Naples, Italy. and LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Martinez-Fernandez L, Improta R. Photoactivated proton coupled electron transfer in DNA: insights from quantum mechanical calculations. Faraday Discuss 2018; 207:199-216. [DOI: 10.1039/c7fd00195a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The energetics of the two main proton coupled electron transfer processes that could occur in DNA are determined by means of time dependent-DFT calculations, using the M052X functional and the polarizable continuum model to include solvent effect.
Collapse
Affiliation(s)
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche
- Istituto di Biostrutture e Bioimmagini
- 80136 Naples
- Italy
- LIDYL
| |
Collapse
|
10
|
Conti I, Martínez-Fernández L, Esposito L, Hofinger S, Nenov A, Garavelli M, Improta R. Multiple Electronic and Structural Factors Control Cyclobutane Pyrimidine Dimer and 6-4 Thymine-Thymine Photodimerization in a DNA Duplex. Chemistry 2017; 23:15177-15188. [PMID: 28809462 DOI: 10.1002/chem.201703237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/09/2022]
Abstract
The T-T photodimerization paths leading to the formation of cyclobutane pyrimidine dimer (CPD) and 6-4 pyrimidine pyrimidone (64-PP), the two main DNA photolesions, have been resolved for a T-T step in a DNA duplex by two complementary state-of-the-art quantum mechanical approaches: QM(CASPT2//CASSCF)/MM and TD-DFT/PCM. Based on the analysis of several different representative structures, we define a new-ensemble of cooperating geometrical and electronic factors (besides the distance between the reacting bonds) ruling T-T photodimerization in DNA. CPD is formed by a barrierless path on an exciton state delocalized over the two bases. Large interbase stacking and shift values, together with a small pseudorotation phase angle for T at the 3'-end, favor this reaction. The oxetane intermediate, leading to a 64-PP adduct, is formed on a singlet T→T charge-transfer state and is favored by a large interbase angle and slide values. A small energy barrier (<0.3 eV) is associated to this path, likely contributing to the smaller quantum yield observed for this process. Eventually, a clear directionality is always shown by the electronic excitation characterizing the singlet photoactive state driving the photodimerization process: an exciton that is more localized on T3 and a 5'-T→3'-T charge transfer for CPD and oxetane formation, respectively, thus calling for specific electronic constraints.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale "T. Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | | | - Luciana Esposito
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Siegfried Hofinger
- TU Wien, Zentraler Informatikdienst, Wiedner Hauptstrasse 8-10, 1040, Wien, Austria.,Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49331-1295, USA
| | - Artur Nenov
- Dipartimento di Chimica Industriale "T. Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "T. Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy.,LIDYL, CEA, CNRS, Université Paris, Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|