1
|
Ferdeghini C, Wu M, Ranjan P, Würdemann MA, Pyschik J, Mitsos A, Ruijter E, Orru RV, Hansen T, Saya JM. Strong Hydrogen Bond Donating Solvents Accelerate the Passerini Three-Component Reaction. J Org Chem 2025; 90:5000-5007. [PMID: 40178043 PMCID: PMC11998065 DOI: 10.1021/acs.joc.5c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
We report enhanced reaction rates of the Passerini reaction (P-3CR) using 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a cosolvent. Although alcoholic solvents typically increase the energy barrier of the rate-determining step for the P-3CR, we observed significant rate enhancements even when employing strong hydrogen bond donating (HBD) alcohols as cosolvents. This rate enhancement was observed for most aprotic organic solvents, with the exception of strong hydrogen bond accepting (HBA) solvents such as DMF. Experimental kinetic studies and DFT calculations provided a mechanistic rationale for our observations. An investigation of the substrate scope showed that this rate enhancement generally resulted in a (slight) increase of the overall yield in the P-3CR.
Collapse
Affiliation(s)
- Claudio Ferdeghini
- Biobased
Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials
(AMIBM), Maastricht University, Urmonderbaan 22, Geleen 6167RD, The Netherlands
| | - Minghui Wu
- Biobased
Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials
(AMIBM), Maastricht University, Urmonderbaan 22, Geleen 6167RD, The Netherlands
| | - Prabhat Ranjan
- Biobased
Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials
(AMIBM), Maastricht University, Urmonderbaan 22, Geleen 6167RD, The Netherlands
| | - Martien A. Würdemann
- Biobased
Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials
(AMIBM), Maastricht University, Urmonderbaan 22, Geleen 6167RD, The Netherlands
| | - Jan Pyschik
- Process Systems
Engineering, RWTH Aachen University, Schinkelstrasse 8, Aachen 52062, Germany
| | - Alexander Mitsos
- Process Systems
Engineering, RWTH Aachen University, Schinkelstrasse 8, Aachen 52062, Germany
| | - Eelco Ruijter
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Romano V.A. Orru
- Biobased
Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials
(AMIBM), Maastricht University, Urmonderbaan 22, Geleen 6167RD, The Netherlands
| | - Thomas Hansen
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Jordy M. Saya
- Biobased
Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials
(AMIBM), Maastricht University, Urmonderbaan 22, Geleen 6167RD, The Netherlands
| |
Collapse
|
2
|
Jurina T, Sokač Cvetnić T, Šalić A, Benković M, Valinger D, Gajdoš Kljusurić J, Zelić B, Jurinjak Tušek A. Application of Spectroscopy Techniques for Monitoring (Bio)Catalytic Processes in Continuously Operated Microreactor Systems. Catalysts 2023. [DOI: 10.3390/catal13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In the last twenty years, the application of microreactors in chemical and biochemical industrial processes has increased significantly. The use of microreactor systems ensures efficient process intensification due to the excellent heat and mass transfer within the microchannels. Monitoring the concentrations in the microchannels is critical for a better understanding of the physical and chemical processes occurring in micromixers and microreactors. Therefore, there is a growing interest in performing in-line and on-line analyses of chemical and/or biochemical processes. This creates tremendous opportunities for the incorporation of spectroscopic detection techniques into production and processing lines in various industries. In this work, an overview of current applications of ultraviolet–visible, infrared, Raman spectroscopy, NMR, MALDI-TOF-MS, and ESI-MS for monitoring (bio)catalytic processes in continuously operated microreactor systems is presented. The manuscript includes a description of the advantages and disadvantages of the analytical methods listed, with particular emphasis on the chemometric methods used for spectroscopic data analysis.
Collapse
Affiliation(s)
- Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Bruno Zelić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| |
Collapse
|
3
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
4
|
Recent advances and challenges in experiment-oriented polymer informatics. Polym J 2022. [DOI: 10.1038/s41428-022-00734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Affiliation(s)
- Phuong Pham
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Susan Oliver
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
6
|
Pham P, Oliver S, Nguyen DT, Boyer C. Effect of Cationic Groups on the Selectivity of Ternary Antimicrobial Polymers. Macromol Rapid Commun 2022; 43:e2200377. [PMID: 35894165 DOI: 10.1002/marc.202200377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Antimicrobial polymers (AMPs) have emerged as a promising approach to combat multidrug-resistant pathogens. Developed from binary polymers, which contain cationic and hydrophobic groups, ternary polymers are enhanced by adding neutral hydrophilic monomers to improve their biocompatibility. Cationic groups have attracted significant attention owing to their pivotal role in AMPs. Although many studies have investigated the effect of cationic groups on antimicrobial activity of binary AMPs, there is a lack of comprehensive and systematic evaluation for ternary AMPs. Therefore, a library of 31 statistical amphiphilic ternary polymers containing different cationic groups, including primary amine, guanidine and sulfonium groups was prepared to investigate the impact of cationic groups on antimicrobial activity and biocompatibility. We show that the cationic balance appears to be a critical factor influencing polymers' antibacterial activity and selectivity. Our results reveal that the polymers that have the ratio of the cationic groups ranging between 50-60%, coupled with a cationic/hydrophobic ratio in the range of [1.4-2] and an appropriate neutral hydrophilic/hydrophobic balance, exhibited the highest selectivity toward mammalian cells. Furthermore, selectivity can be improved with suitable cationic moieties and good neutral hydrophilic candidates. In the present study, a lysine-mimicking monomer and PEG chain were the best choices for cationic and hydrophilic sources to develop the most selective AMPs, displaying an impressive selectivity for HC50 and IC50 greater than 83 and 21, respectively. This study elucidates a structure-property-performance relationship for ternary AMPs, which contributes to the development of AMPs capable of selectively targeting gram-negative pathogens. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Phuong Pham
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Susan Oliver
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Duong Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Chou LC, Mohamed MG, Kuo SW, Nakamura Y, Huang CF. Synthesis of multifunctional poly(carbamoyl ester)s containing dual-cleavable linkages and an AIE luminogen via Passerini-type multicomponent polymerization. Chem Commun (Camb) 2022; 58:12317-12320. [DOI: 10.1039/d2cc03829c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We conducted Passerini multicomponent polymerizations with aldehydes, carboxylic acids, and isocyanide and afforded novel functional poly(carbamoyl ester)s with dual-cleavable linkages and an aggregation-induced emission luminogen.
Collapse
Affiliation(s)
- Li-Chieh Chou
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yasuyuki Nakamura
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
8
|
Westphal H, Warias R, Weise C, Ragno D, Becker H, Spanka M, Massi A, Gläser R, Schneider C, Belder D. An integrated resource-efficient microfluidic device for parallelised studies of immobilised chiral catalysts in continuous flow via miniaturized LC/MS-analysis. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-μReactor catalysis screening: a novel method combining multiple miniaturized packed-bed reactors and on-line HPLC/MS-analysis on one single microfluidic device.
Collapse
Affiliation(s)
- Hannes Westphal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Chris Weise
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Luigi Borsari 46, 44121, Italy
| | - Holger Becker
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Matthias Spanka
- Institute of Organic Chemistry, Leipzig University, Johannisallee 28, 04103, Germany
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Luigi Borsari 46, 44121, Italy
| | - Roger Gläser
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103, Germany
| | - Christoph Schneider
- Institute of Organic Chemistry, Leipzig University, Johannisallee 28, 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Germany
| |
Collapse
|
9
|
Wang Z, Zhou Y, Chen M. Computer‐Aided
Living Polymerization Conducted under
Continuous‐Flow
Conditions
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| |
Collapse
|
10
|
Cuzzucoli Crucitti V, Contreas L, Taresco V, Howard SC, Dundas AA, Limo MJ, Nisisako T, Williams PM, Williams P, Alexander MR, Wildman RD, Muir BW, Irvine DJ. Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43290-43300. [PMID: 34464079 DOI: 10.1021/acsami.1c08662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimensional, surface-active materials were successfully used to control the surface properties of particles by forming a unimolecular deep layer on the surface of the particles via microfluidic processing. This strategy deliberately utilizes the surfactant to both create the stable particles and deliver a desired cell-instructive behavior. Therefore, these specifically designed, highly functional surfactants are critical to promoting a desired cell response. This library contained surfactants constructed from 20 molecularly distinct (meth)acrylic monomers, which had been pre-identified by HT screening to exhibit specific, varied, and desirable bacterial biofilm inhibitory responses. The surfactant's self-assembly properties in water were assessed by developing a novel, fully automated, HT method to determine the critical aggregation concentration. These values were used as the input data to a computational-based evaluation of the key molecular descriptors that dictated aggregation behavior. Thus, this combination of HT techniques facilitated the rapid design, generation, and evaluation of further novel, highly functional, cell-instructive surfaces by application of designed surfactants possessing complex molecular architectures.
Collapse
Affiliation(s)
- Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD U.K
| | - Leonardo Contreas
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD U.K
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD U.K
| | | | - Adam A Dundas
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD U.K
| | - Marion J Limo
- Interface and Surface Analysis Centre, University of Nottingham, Nottingham, NG7 2RD U.K
| | - Takasi Nisisako
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Philip M Williams
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD U.K
| | - Paul Williams
- Biodiscovery Institute, National Biofilms Innovation Centre and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD U.K
| | | | - Ricky D Wildman
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD U.K
| | | | - Derek J Irvine
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD U.K
| |
Collapse
|
11
|
Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, Junkers T. Polymer Synthesis in Continuous Flow Reactors. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101256] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
McCullough K, Williams T, Mingle K, Jamshidi P, Lauterbach J. High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery. Phys Chem Chem Phys 2020; 22:11174-11196. [PMID: 32393932 DOI: 10.1039/d0cp00972e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High throughput experimentation in heterogeneous catalysis provides an efficient solution to the generation of large datasets under reproducible conditions. Knowledge extraction from these datasets has mostly been performed using statistical methods, targeting the optimization of catalyst formulations. The combination of advanced machine learning methodologies with high-throughput experimentation has enormous potential to accelerate the predictive discovery of novel catalyst formulations that do not exist with current statistical design of experiments. This perspective describes selective examples ranging from statistical design of experiments for catalyst synthesis to genetic algorithms applied to catalyst optimization, and finally random forest machine learning using experimental data for the discovery of novel catalysts. Lastly, this perspective also provides an outlook on advanced machine learning methodologies as applied to experimental data for materials discovery.
Collapse
Affiliation(s)
- Katherine McCullough
- College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
13
|
Whitfield R, Truong NP, Messmer D, Parkatzidis K, Rolland M, Anastasaki A. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem Sci 2019; 10:8724-8734. [PMID: 33552458 PMCID: PMC7844732 DOI: 10.1039/c9sc03546j] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The width and shape of molecular weight distributions can significantly affect the properties of polymeric materials and thus are key parameters to control. This mini-review aims to critically summarise recent approaches developed to tailor molecular weight distributions and highlights the strengths and limitations of each technique. Special emphasis will also be given to applications where tuning the molecular weight distribution has been used as a strategy to not only enhance polymer properties but also to increase the fundamental understanding behind complex mechanisms and phenomena.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Nghia P Truong
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Daniel Messmer
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Manon Rolland
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Athina Anastasaki
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| |
Collapse
|
14
|
Zaquen N, Haven JJ, Rubens M, Altintas O, Bohländer P, Offenloch JT, Barner‐Kowollik C, Junkers T. Exploring the Photochemical Reactivity of Multifunctional Photocaged Dienes in Continuous Flow. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neomy Zaquen
- Organic and Bio-Polymer Chemistry (OBPC)Universiteit Hasselt Agoralaan Building D 3590 Diepenbeek Belgium
| | - Joris J. Haven
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Melbourne Australia
| | - Maarten Rubens
- Organic and Bio-Polymer Chemistry (OBPC)Universiteit Hasselt Agoralaan Building D 3590 Diepenbeek Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Melbourne Australia
| | - Ozcan Altintas
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Peggy Bohländer
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Janin T. Offenloch
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Christopher Barner‐Kowollik
- School of ChemistryPhysics and Mechanical EngineeringQueensland University of Technology (QUT) 2 George St Brisbane QLD 4000 Australia
- Macromolecular ArchitecturesInstitut für Technische und PolymerchemieKarlsruhe Institute of Technology (KIT) Engesserstraße 18 76128 Karlsruhe Germany
| | - Tanja Junkers
- Organic and Bio-Polymer Chemistry (OBPC)Universiteit Hasselt Agoralaan Building D 3590 Diepenbeek Belgium
- Polymer Reaction Design GroupSchool of ChemistryMonash University 19 Rainforest Walk VIC 3800 Melbourne Australia
| |
Collapse
|
15
|
Zhang Y, Han L, Ma H, Yang L, Liu P, Shen H, Li C, Li Y. The investigation on synthesis of periodic polymers with 1,1-diphenylethylene (DPE) derivatives via living anionic polymerization. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Goseki R, Zhang F, Takahata K, Uchida S, Ishizone T. Synthesis of a well-defined alternating copolymer of 1,1-diphenylethylene and tert-butyldimethylsilyloxymethyl substituted styrene by anionic copolymerization: toward tailored graft copolymers with controlled side chain densities. Polym Chem 2019. [DOI: 10.1039/c9py01161g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Well-defined alternating copolymers comprising 1,1-diphenylethylene (DPE) and styrene derivative having sterically bulky tert-butyldimethylsilyloxymethyl group at the meta position (St-TBS) were successfully synthesized.
Collapse
Affiliation(s)
- Raita Goseki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Fan Zhang
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Kazuki Takahata
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Satoshi Uchida
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
17
|
Haven JJ, Junkers T. Mapping Dithiobenzoate-Mediated RAFT Polymerization Products via Online Microreactor/Mass Spectrometry Monitoring. Polymers (Basel) 2018; 10:E1228. [PMID: 30961153 PMCID: PMC6290620 DOI: 10.3390/polym10111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/03/2022] Open
Abstract
2-cyano-2-propyl dithiobenzoates (CPDB)-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization was monitored by online flow microreactor/mass spectrometry. This enabled the reactions to be followed in a time-resolved manner, closely resolving product patterns in the reaction mixtures at any point in time. RAFT polymerization was investigated for low RAFT to monomer ratios, enabling the monitoring of the early stages of a typical RAFT polymerization. The expected transition from pre- to the RAFT main equilibrium is observed. However, very high abundancies for cross-termination products were also identified, both in the pre- and main equilibrium stage. This is a somewhat surprising result as such products have always been expected, but to date have not been observed in the majority of studies. Product isolation and NMR analysis revealed that cross-termination occurs in the para position of the benzoate ring and becomes fully irreversible via re-aromatization of the ring in a H-shift reaction. The present data suggest a pronounced chain-length dependence of the cross-termination reaction, which would explain why the products are seen here, but not in other studies.
Collapse
Affiliation(s)
- Joris J Haven
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia.
| | - Tanja Junkers
- Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, VIC 3800, Australia.
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| |
Collapse
|
18
|
Onwukamike KN, Grelier S, Grau E, Cramail H, Meier MAR. On the direct use of CO 2 in multicomponent reactions: introducing the Passerini four component reaction. RSC Adv 2018; 8:31490-31495. [PMID: 35548239 PMCID: PMC9085615 DOI: 10.1039/c8ra07150k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022] Open
Abstract
We introduce a novel isocyanide-based multicomponent reaction, the Passerini four component reaction (P-4CR), by replacing the carboxylic acid component of a conventional Passerini three component reaction (P-3CR) with an alcohol and CO2. Key to this approach is the use of a switchable solvent system, allowing the synthesis of a variety of α-carbonate-amides. The reaction was first investigated and optimized using butanol, isobutyraldehyde, tert-butyl isocyanide and CO2. Parameters investigated included the effect of reactant equivalents, reactant concentration, solvent, catalyst, catalyst concentration and CO2 pressure. Of the other parameters, the purity of the aldehyde and its tendency to oxidize was one of the most critical parameters for a successful P-4CR. After optimization, a total of twelve (12) P-4CR compounds were synthesized with conversions ranging between 16 and 82% and isolated yields between 18 and 43%. Their structures were confirmed via1H and 13C NMR, FT-IR and high resolution mass spectrometry (ESI-MS). In addition, three (3) hydrolysis products of P-4CR (α-hydroxyl-amides) were successfully isolated with yields between 23 and 63% and fully characterized (1H, 13C NMR, FT-IR and ESI-MS) as well. We introduce a novel isocyanide-based multicomponent reaction, the Passerini four component reaction (P-4CR), by replacing the carboxylic acid component of a conventional Passerini three component reaction (P-3CR) with an alcohol and CO2.![]()
Collapse
Affiliation(s)
- Kelechukwu Nnabuike Onwukamike
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum (MZE), Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany https://www.meier-michael.com.,Univ. Bordeaux, CNRS, Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France htpps://www.lcpo.fr.,Centre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France
| | - Stéphane Grelier
- Univ. Bordeaux, CNRS, Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France htpps://www.lcpo.fr.,Centre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France
| | - Etienne Grau
- Univ. Bordeaux, CNRS, Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France htpps://www.lcpo.fr.,Centre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France
| | - Henri Cramail
- Univ. Bordeaux, CNRS, Bordeaux INP/ENSCBP, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France htpps://www.lcpo.fr.,Centre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, UMR 5629 16 Avenue Pey-Berland, F-33607 Pessac Cedex France
| | - Michael A R Meier
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum (MZE), Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany https://www.meier-michael.com
| |
Collapse
|
19
|
Affiliation(s)
- Umit Tunca
- Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| |
Collapse
|
20
|
Arandkar V, Vaarla K, Vedula RR. Facile one pot multicomponent synthesis of novel 4-(benzofuran-2-yl)-2-(3-(aryl/heteryl)-5-(aryl/heteryl)-4,5-dihydro-1 H-pyrazol-1yl)thiazole derivatives. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1440600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Varun Arandkar
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Krishnaiah Vaarla
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
21
|
Wu H, Gou Y, Wang J, Tao L. Multicomponent Reactions for Surface Modification. Macromol Rapid Commun 2018; 39:e1800064. [DOI: 10.1002/marc.201800064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
22
|
Judzewitsch PR, Nguyen T, Shanmugam S, Wong EHH, Boyer C. Towards Sequence‐Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peter R. Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Thuy‐Khanh Nguyen
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
23
|
Judzewitsch PR, Nguyen T, Shanmugam S, Wong EHH, Boyer C. Towards Sequence‐Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity. Angew Chem Int Ed Engl 2018; 57:4559-4564. [DOI: 10.1002/anie.201713036] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Peter R. Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Thuy‐Khanh Nguyen
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
24
|
De Neve J, Haven JJ, Maes L, Junkers T. Sequence-definition from controlled polymerization: the next generation of materials. Polym Chem 2018. [DOI: 10.1039/c8py01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An overview is given on the state-of-the-art in synthesis of sequence-controlled and sequence-defined oligomers and polymers.
Collapse
Affiliation(s)
- Jeroen De Neve
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| | - Joris J. Haven
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| | - Lowie Maes
- Institute for Materials Research
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton VIC 3800
- Australia
| |
Collapse
|
25
|
Affiliation(s)
- Joris J. Haven
- Polymer Reaction Design Group; Institute for Materials Research (imo-imomec); Hasselt University; Campus Diepenbeek Building D 3590 Diepenbeek Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group; Institute for Materials Research (imo-imomec); Hasselt University; Campus Diepenbeek Building D 3590 Diepenbeek Belgium
- IMEC division IMOMEC; Wetenschapspark 1 3590 Diepenbeek Belgium
| |
Collapse
|