1
|
Trindade SG, Du G, Galantini L, Piculell L, Loh W, Schillén K. Structural interplay in block copolymer-bile salt complexes: from globules to ribbons. SOFT MATTER 2025; 21:3814-3828. [PMID: 40260615 DOI: 10.1039/d5sm00097a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The supramolecular structures resulting from the complexation between the neutral-cationic block copolymer poly(ethylene oxide)-block-poly(2-(trimethylammonium)ethyl methacrylate iodide) (PEO114-b-PTMAEMAI95) and the bile salt sodium deoxycholate (NaDC) were investigated by dynamic light scattering, small-angle X-ray scattering, cryogenic transmission electron microscopy and proton NMR techniques. Complexes were produced using different preparation protocols: the direct mixing of the pure solutions of block copolymer and bile salt, containing their respective simple counterions, and the dispersion in water of a freeze-dried complex salt, free of simple counterions. While the direct mixing protocol produced a mixture of ordered ribbon-like aggregates and globular particles with disordered cores, the complex salt protocol yielded exclusively ordered "ribbons". The globular particles resembled classical spherical "complex coacervate core micelles" with a core of anionic deoxycholate micelles complexed with cationic PTMAEMA(+) blocks, the core radius being limited by the PTMAEMA contour length, and a shell composed of neutral PEO blocks. The drastically different ribbon morphology was found to result from (1) the organization of DC anions into hexagonally packed helices in the core and (2) the limitations on the ribbon thickness imposed by the lengths of the copolymer blocks. By varying temperature and sample treatments, it was found that the ordered ribbon morphology represents the equilibrium structure at 25 °C, while the globular morphology is favored at 50 °C. The results suggest strategies to design the morphology and tune the dimensions of aqueous block copolymer-bile salt aggregates.
Collapse
Affiliation(s)
- Suelen Gauna Trindade
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Lennart Piculell
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
2
|
Zhang Y, Wen G, Giaouzi D, Pispas S, Li J. Closely Packed Core-Shell Micelle Structures of Double Hydrophilic Miktoarm Star Copolymers at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8284-8290. [PMID: 38567402 DOI: 10.1021/acs.langmuir.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The aggregation behavior of amphiphilic block copolymers at the air-water interface has been extensively studied, but less attention was given to that of star copolymers. In this work, we studied the interfacial aggregation behavior of two double hydrophilic pH- and temperature-responsive miktoarm star copolymers of poly[di(ethylene glycol) methyl ether methacrylate]-poly[2-(dimethylamino)ethyl methacrylate] (PDEGMA3-PDMAEMA3 and PDEGMA4-PDMAEMA7, the subscripts denote arm numbers) with different molecular weights. The effects of subphase pH and temperature on the monolayer isotherms and hysteresis curves of the two star copolymers and the morphologies of their Langmuir-Blodgett (LB) films were studied by the Langmuir film balance technique and atomic force microscopy, respectively. At the air-water interface, the two star copolymers tend to form closely packed micelles. These micelles exhibit a core-shell structure, where the small hydrophobic core consists of cross-linker of ethylene glycol dimethacrylate (EGDMA) and the carbon backbones of PDEGMA and PDMAEMA arms and the short hydrophilic shell is composed of di(ethylene glycol) and tertiary amine side groups. With increasing subphase pH, the surface pressure versus molecular area isotherms shift toward larger mean molecular areas as a result of the enhanced interface adsorption of nonprotonated tertiary amine groups. The isotherm shift of PDEGMA3-PDMAEMA3 monolayers is primarily attributed to high density of tertiary amine groups in the shells, while that of PDEGMA4-PDMAEMA7 is mainly attributed to high density of di(ethylene glycol) groups in the shells. The hysteresis degrees in the monolayers of the two copolymers under alkaline and neutral conditions are greater than those under acidic conditions due to the decreased protonation degree of the tertiary amine groups. At 10 °C, the mobility of the shells is poor and the isotherms are located on the right. Above the lower critical solution temperature, di(ethylene glycol) groups contract, which causes a slight shift of the isotherms toward smaller mean molecular areas.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, People's Republic of China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, People's Republic of China
| | - Despoina Giaouzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Jian Li
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, People's Republic of China
| |
Collapse
|
3
|
Triantafyllopoulou E, Selianitis D, Pippa N, Gazouli M, Valsami G, Pispas S. Development of Hybrid DSPC:DOPC:P(OEGMA 950-DIPAEMA) Nanostructures: The Random Architecture of Polymeric Guest as a Key Design Parameter. Polymers (Basel) 2023; 15:1989. [PMID: 37177137 PMCID: PMC10181429 DOI: 10.3390/polym15091989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Hybrid nanoparticles have gained a lot of attention due to their advantageous properties and versatility in pharmaceutical applications. In this perspective, the formation of novel systems and the exploration of their characteristics not only from a physicochemical but also from a biophysical perspective could promote the development of new nanoplatforms with well-defined features. In the current work, lipid/copolymer bilayers were formed in different lipid to copolymer ratios and examined via differential scanning calorimetry as a preformulation study to decipher the interactions between the biomaterials, followed by nanostructure preparation by the thin-film hydration method. Physicochemical and toxicological evaluations were conducted utilizing light scattering techniques, fluorescence spectroscopy, and MTS assay. 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in different weight ratios were the chosen lipids, while a linear random copolymer with pH- and thermoresponsive properties comprised of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA) in different ratios was used. According to our results, non-toxic hybrid nanosystems with stimuli-responsive properties were successfully formulated, and the main parameters influencing their overall performance were the hydrophilic/hydrophobic balance, lipid to polymer ratio, and more importantly the random copolymer topology. Hopefully, this investigation can promote a better understanding of the factors affecting the behavior of hybrid systems.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.T.); (N.P.); (G.V.)
| | - Dimitriοs Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.T.); (N.P.); (G.V.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine National and Kapodistrian, University of Athens, 11527 Athens, Greece;
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.T.); (N.P.); (G.V.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
4
|
Influence of DNA Type on the Physicochemical and Biological Properties of Polyplexes Based on Star Polymers Bearing Different Amino Functionalities. Polymers (Basel) 2023; 15:polym15040894. [PMID: 36850178 PMCID: PMC9966362 DOI: 10.3390/polym15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The interactions of two star polymers based on poly (2-(dimethylamino)ethyl methacrylate) with different types of nucleic acids are investigated. The star polymers differ only in their functionality to bear protonable amino or permanently charged quaternary ammonium groups, while DNAs of different molar masses, lengths and topologies are used. The main physicochemical parameters of the resulting polyplexes are determined. The influence of the polymer' functionality and length and topology of the DNA on the structure and properties of the polyelectrolyte complexes is established. The quaternized polymer is characterized by a high binding affinity to DNA and formed strongly positively charged, compact and tight polyplexes. The parent, non-quaternized polymer exhibits an enhanced buffering capacity and weakened polymer/DNA interactions, particularly upon the addition of NaCl, resulting in the formation of less compact and tight polyplexes. The cytotoxic evaluation of the systems indicates that they are sparing with respect to the cell lines studied including osteosarcoma, osteoblast and human adipose-derived mesenchymal stem cells and exhibit good biocompatibility. Transfection experiments reveal that the non-quaternized polymer is effective at transferring DNA into cells, which is attributed to its high buffering capacity, facilitating the endo-lysosomal escape of the polyplex, the loose structure of the latter one and weakened polymer/DNA interactions, benefitting the DNA release.
Collapse
|
5
|
He G, Wen G, Skandalis A, Pispas S, Liu D. Effects of ionic strength and ion-specificity on the interface behavior of PDMAEMA-b-PLMA-b-POEGMA triblock terpolymer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Tomara M, Selianitis D, Pispas S. Dual-Responsive Amphiphilic P(DMAEMA-co-LMA-co-OEGMA) Terpolymer Nano-Assemblies in Aqueous Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213791. [PMID: 36364568 PMCID: PMC9659099 DOI: 10.3390/nano12213791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
This work reports on the synthesis and self-assembly of a novel series of dual-responsive poly[2-(dimethylamino)ethylmethacrylate-co-laurylmethacrylate-co-(oligoethyleneglycol)methacrylate], P(DMAEMA-co-LMA-co-OEGMA)statistical terpolymers in aqueous solutions. Five P(DMAEMA-co-LMA-co-OEGMA) amphiphilic terpolymers, having different content of the three monomers, were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The success of the synthesis was confirmed by the molecular characterization of the terpolymers via size exclusion chromatography (SEC) for the determination of molecular weights and the molecular weight distributions. By using nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) spectroscopy, it was possible to determine the exact composition of the terpolymers. Dynamic light scattering (DLS) and fluorescence spectroscopy (FS) indicated the formation of P(DMAEMA-co-LMA-co-OEGMA) unimolecular or multichain aggregates in aqueous solutions, as a response to pH, temperature and ionic strength changes, with their dimensions being largely affected. The amphiphilic terpolymers were able to encapsulate the hydrophobic drug curcumin (CUR) and demonstrate stability to fetal bovine serum (FBS) solutions. These terpolymer aggregates were studied by DLS, FS and UV-Vis, and it was found that they may have been used as potential nanocarriers for drug delivery and bio-imaging applications.
Collapse
|
7
|
He G, Wen G, Skandalis A, Pispas S, Liu D, Zhang W. Interfacial aggregation behavior of triblock terpolymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Skandalis A, Selianitis D, Sory DR, Rankin SM, Jones JR, Pispas S. Poly(2‐(dimethylamino) ethyl methacrylate)‐
b
‐poly(lauryl methacrylate)‐
b
‐poly(oligo ethylene glycol methacrylate) triblock terpolymer micelles as drug delivery carriers for curcumin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Athanasios Skandalis
- Department of Materials Imperial College London London UK
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - David R. Sory
- Faculty of Medicine, National Heart and Lung Institute Imperial College London London UK
| | - Sara M. Rankin
- Faculty of Medicine, National Heart and Lung Institute Imperial College London London UK
| | | | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
9
|
Zanata DDM, Felisberti MI. Thermo- and pH-responsive POEGMA-b-PDMAEMA-b-POEGMA triblock copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Neofytos DD, Papagiannopoulos A, Chrysina ED, Pispas S. Formation and physicochemical properties of glycogen phosphorylase in complex with a cationic polyelectrolyte. Int J Biol Macromol 2022; 206:371-380. [PMID: 35240213 DOI: 10.1016/j.ijbiomac.2022.02.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022]
Abstract
The accumulation of rabbit muscle glycogen phosphorylase b (RMGPb) in electrostatic complexes with the cationic polyelectrolyte poly 2-(dimethylamino) ethyl methacrylate in its quenched form (QPDMAEMA) was studied in two buffer solutions. In the N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) buffer, large complexes of RMGPb-QPDMAEMA were formed which adopted smaller sizes as QPDMAEMA concentration increased. However, in N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer, the hydrodynamic radius of the formed complexes gradually increased as the polymer concentration increased. Zeta potential measurements (ζp) showed that RMGPb significantly changed the ζp of the QPDMAEMA aggregates. Fluorescence studies showed that the interaction between RMGPb and QPDMAEAMA was enhanced as polymer concentration increased. Specifically, 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescence indicated that in the BES buffer the aggregates became denser as more QPDMAEMA was added, while in the HEPES buffer the density of the formed structures decreased. RMGPb's secondary structure was examined by Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) and Circular Dichroism (CD) showing that QPDMAEMA interaction with RMGPb does not induce any changes to the secondary structure of the enzyme. These observations suggest that cationic polyelectrolytes may be utilized for the formulation of RMGPb in multifunctional nanostructures and be further exploited in innovative biotechnology applications and bioinspired materials development.
Collapse
Affiliation(s)
- Dionysios D Neofytos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
11
|
Vlassi E, Papagiannopoulos A, Pispas S. Star Polyelectrolytes with Mixed Arms of PDMAEMA and POEGMA: Self‐assembly and Co‐assembly with Insulin. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eleni Vlassi
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
12
|
Length-scale dependence of pH- and temperature-response of PDMAEMA-b-PHPMA block copolymer self-assemblies in aqueous solutions. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Murmiliuk A, Filippov SK, Rud O, Košovan P, Tošner Z, Radulescu A, Skandalis A, Pispas S, Šlouf M, Štěpánek M. Reversible multilayered vesicle-like structures with fluid hydrophobic and interpolyelectrolyte layers. J Colloid Interface Sci 2021; 599:313-325. [PMID: 33957424 DOI: 10.1016/j.jcis.2021.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Hydrophobic blocks of amphiphilic block copolymers often form glassy micellar cores at room temperature with a rigid structure that limits their applications as nanocapsules for targeted delivery. Nevertheless, we prepared and analyzed core/shell micelles with a soft core, formed by a self-assembled block copolymer consisting of a hydrophobic block and a polycation block, poly(lauryl acrylate)-block-poly(trimethyl-aminoethyl acrylate) (PLA-QPDMAEA), in aqueous solution. By light and small-angle neutron scattering, by transmission electron microscopy and by fluorescence spectroscopy, we showed that these core/shell micelles are spherical and cylindrical with a fluid-like PLA core and a positively charged outer shell and that they can encapsulate and release hydrophobic solutes. Moreover, after mixing these PLA-QPDMAEA core/shell micelles with another diblock copolymer, consisting of a hydrophilic block and a polyanion block, namely poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-PMAA), we observed the formation of novel vesicle-like multicompartment structures containing both soft hydrophobic and interpolyelectrolyte (IPEC) layers. By combining small-angle neutron scattering with self-consistent field modeling, we confirmed the formation of these complex vesicle-like structures with a swollen PEO core, an IPEC inner layer, a PLA soft layer, an IPEC outer layer and a loose PEO corona. Thus, these multicompartment micelles with fluid and IPEC layers and a hydrophilic corona may be used as nanocapsules with several tunable properties, including the ability to control the thickness of each layer, the charge of the IPEC layers and the stability of the micelles, to deliver both hydrophobic and multivalent solutes.
Collapse
Affiliation(s)
- Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Sergey K Filippov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Oleg Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Zdeněk Tošner
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science@MLZ, Lichtenbergstraße 1, D-85747 Garching, Germany
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náméstí 2, Prague 6 162 06, Czech Republic
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Selianitis D, Pispas S. P(
MMA‐
co
‐HPMA
)‐
b
‐POEGMA
copolymers: synthesis, micelle formation in aqueous media and drug encapsulation. POLYM INT 2021. [DOI: 10.1002/pi.6229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
15
|
Li S, Guo Z, Zhang H, Li X, Li W, Liu P, Ren Y, Li X. ABC Triblock Copolymers Antibacterial Materials Consisting of Fluoropolymer and Polyethylene Glycol Antifouling Block and Quaternary Ammonium Salt Sterilization Block. ACS APPLIED BIO MATERIALS 2021; 4:3166-3177. [PMID: 35014404 DOI: 10.1021/acsabm.0c01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sen Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Zhaoyuan Guo
- The No. 4 Hospital of Jinan, 50 Shifan Road, Jinan 250031, People’s Republic of China
| | - Hongxia Zhang
- The No. 4 Hospital of Jinan, 50 Shifan Road, Jinan 250031, People’s Republic of China
| | - Xuelian Li
- The No. 4 Hospital of Jinan, 50 Shifan Road, Jinan 250031, People’s Republic of China
| | - Wenting Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Peng Liu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Yufang Ren
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| | - Xue Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People’s Republic of China
| |
Collapse
|
16
|
Thermal Stability and Kinetics of Thermal Decomposition of Statistical Copolymers of N-Vinylpyrrolidone and Alkyl Methacrylates Synthesized via RAFT Polymerization. J CHEM-NY 2021. [DOI: 10.1155/2021/6633052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The thermal stability and the kinetics of thermal decomposition of statistical copolymers of N-vinylpyrrolidone (NVP) with the alkyl methacrylates, hexyl methacrylate (HMA) and stearyl methacrylate (SMA), were studied by Thermogravimetric Analysis (TGA) and Differential Thermogravimetry (DTG). Statistical copolymers of different compositions were studied, and their thermal decomposition behavior was compared to the corresponding homopolymers. The activation energies of the thermal decomposition were calculated using the Ozawa-Flynn-Wall, the Kissinger, and the Kissinger-Akahira-Sunose methodologies. The effects of the nature of the methacrylate monomer, the copolymer composition, and the rate of heating are discussed.
Collapse
|
17
|
Kafetzi M, Pispas S. Multifaceted pH and Temperature Induced Self‐Assembly of P(DMAEMA‐
co
‐LMA)‐
b
‐POEGMA Terpolymers and Their Cationic Analogues in Aqueous Media. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Martha Kafetzi
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
18
|
Kafetzi M, Pispas S. Effects of Hydrophobic Modifications on the Solution Self-Assembly of P(DMAEMA-co-QDMAEMA)- b-POEGMA Random Diblock Copolymers. Polymers (Basel) 2021; 13:polym13030338. [PMID: 33494531 PMCID: PMC7866081 DOI: 10.3390/polym13030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
In this work, the synthesis and the aqueous solution self-assembly behavior of novel partially hydrophobically modified poly(2-(dimethylamino) ethyl methacrylate)-b-poly(oligo(ethylelene glycol) methyl ether methacrylatetabel) pH and temperature responsive random diblock copolymers (P(DMAEMA-co-Q6/12DMAEMA)-b-POEGMA), are reported. The chemical modifications were accomplished via quaternization with 1-iodohexane (Q6) and 1-iodododecane (Q12) and confirmed by 1H-NMR spectroscopy. The successful synthesis of PDMAEMA-b-POEGMA precursor block copolymers was conducted by RAFT polymerization. The partial chemical modification of the diblocks resulted in the permanent attachment of long alkyl chains on the amine groups of the PDMAEMA block and the presence of tertiary and quaternary amines randomly distributed within the PDMAEMA block. Light scattering techniques confirmed that the increased hydrophobic character results in the formation of nanoaggregates of high mass and tunable pH and temperature response. The characteristics of the aggregates are also affected by the aqueous solution preparation protocol, the nature of the quaternizing agent and the quaternization degree. The incorporation of long alkyl chains allowed the encapsulation of indomethacin within the amphiphilic diblock copolymer aggregates. Nanostructures of increased size were detected due to the encapsulation of indomethacin into the interior of the hydrophobic domains. Drug release studies demonstrated that almost 50% of the encapsulated drug can be released on demand by aid of ultrasonication.
Collapse
|
19
|
Selianitis D, Pispas S. Multi-responsive poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate) hyperbranched copolymers via reversible addition fragmentation chain transfer polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01320c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-responsive P(OEGMA-co-DIPAEMA) hyperbranched copolymers are synthesized via RAFT polymerization. The copolymers form different aggregates in aqueous media depending on solution pH, temperature and copolymer composition.
Collapse
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
20
|
Haladjova E, Chrysostomou V, Petrova M, Ugrinova I, Pispas S, Rangelov S. Physicochemical Properties and Biological Performance of Polymethacrylate Based Gene Delivery Vector Systems: Influence of Amino Functionalities. Macromol Biosci 2020; 21:e2000352. [PMID: 33283423 DOI: 10.1002/mabi.202000352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Physicochemical characteristics and biological performance of polyplexes based on two identical copolymers bearing tertiary amino or quaternary ammonium groups are evaluated and compared. Poly(2-(dimethylamino)ethyl methacrylate)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) block copolymer (PDMAEMA-b-POEGMA) is synthesized by reversible addition fragmentation chain transfer polymerization. The tertiary amines of PDMAEMA are converted to quaternary ammonium groups by quaternization with methyl iodide. The two copolymers spontaneously formed well-defined polyplexes with DNA. The size, zeta potential, molar mass, aggregation number, and morphology of the polyplex particles are determined. The parent PDMAEMA-b-POEGMA exhibits larger buffering capacity, whereas the corresponding quaternized copolymer (QPDMAEMA-b-POEGMA) displays stronger binding affinity to DNA, yielding invariably larger in size and molar mass particles bearing greater number of DNA molecules per particle. Experiments revealed that QPDMAEMA-b-POEGMA is more effective in transfecting pEGFP-N1 than the parent copolymer, attributed to the larger size, molar mass, and DNA cargo, as well as to the effective cellular traffic, which dominated over the enhanced ability for endo-lysosomal escape of PDMAEMA-b-POEGMA.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.103A, Sofia, 1113, Bulgaria
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., Athens, 11635, Greece
| | - Maria Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.21, Sofia, 1113, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.21, Sofia, 1113, Bulgaria
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., Athens, 11635, Greece
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.103A, Sofia, 1113, Bulgaria
| |
Collapse
|
21
|
Skandalis A, Uchman M, Štěpánek M, Kereı̈che S, Pispas S. Complexation of DNA with QPDMAEMA-b-PLMA-b-POEGMA Cationic Triblock Terpolymer Micelles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Sami Kereı̈che
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Purkynuv Ustav, Albertov 4, 128 01 Prague, Czech Republic
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
22
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|
23
|
Skandalis A, Murmiliuk A, Štěpánek M, Pispas S. Physicochemical Evaluation of Insulin Complexes with QPDMAEMA- b-PLMA- b-POEGMA Cationic Amphiphlic Triblock Terpolymer Micelles. Polymers (Basel) 2020; 12:E309. [PMID: 32028685 PMCID: PMC7077422 DOI: 10.3390/polym12020309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, poly[quaternized 2-(dimethylamino)ethyl methacrylate-b-lauryl methacrylate-b-(oligo ethylene glycol)methacrylate] (QPDMAEMA-b-PLMA-b-POEGMA) cationic amphiphilic triblock terpolymers were used as vehicles for the complexation/encapsulation of insulin (INS). The terpolymers self-assemble in spherical micelles with PLMA cores and mixed QPDMAEMA/POEGMA coronas in aqueous solutions. The cationic micelles were complexed via electrostatic interactions with INS, which contains anionic charges at pH 7. The solutions were colloidally stable in all INS ratios used. Light-scattering techniques were used for investigation of the complexation ability and the size and surface charge of the terpolymer/INS complexes. The results showed that the size of the complexes increases as INS ratio increases, while at the same time the surface charge remains positive, indicating the formation of clusters of micelles/INS complexes in the solution. Fluorescence spectroscopy measurements revealed that the conformation of the protein is not affected after the complexation with the terpolymer micellar aggregates. It was observed that as the solution ionic strength increases, the size of the QPDMAEMA-b-PLMA-b-POEGMA/INS complexes initially decreases and then remains practically constant at higher ionic strength, indicating further aggregation of the complexes. atomic force microscopy (AFM) measurements showed the existence of both clusters and isolated nanoparticulate terpolymer/protein complexes.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic (M.Š.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
24
|
Lechuga-Islas VD, Festag G, Rosales-Guzmán M, Vega-Becerra OE, Guerrero-Santos R, Schubert US, Guerrero-Sánchez C. Quasi-block copolymer design of quaternized derivatives of poly(2-(dimethylamino)ethyl methacrylate): Investigations on thermo-induced self-assembly. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Skandalis A, Pispas S. Synthesis of (AB)
n‐
, A
n
B
n‐,
and A
x
B
y
‐type amphiphilic and double‐hydrophilic star copolymers by RAFT polymerization. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 11635 48 Vassileos Constantinou Avenue, Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation 11635 48 Vassileos Constantinou Avenue, Athens Greece
| |
Collapse
|
26
|
Mitsoni E, Roka N, Pitsikalis M. Statistical copolymerization of N-vinyl-pyrrolidone and alkyl methacrylates via RAFT: reactivity ratios and thermal analysis. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1776-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Fernandez-Alvarez R, Hlavatovičová E, Rodzeń K, Strachota A, Kereïche S, Matějíček P, Cabrera-González J, Núñez R, Uchman M. Synthesis and self-assembly of a carborane-containing ABC triblock terpolymer: morphology control on a dual-stimuli responsive system. Polym Chem 2019. [DOI: 10.1039/c9py00518h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amphiphilic triblock terpolymers have attractive applications in the preparation of nanoparticles with controlled morphology.
Collapse
Affiliation(s)
| | - Eva Hlavatovičová
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
| | - Krzysztof Rodzeń
- Institute of Macromolecular Chemistry AS CR
- 162 06 Prague 6
- Czech Republic
| | - Adam Strachota
- Institute of Macromolecular Chemistry AS CR
- 162 06 Prague 6
- Czech Republic
| | - Sami Kereïche
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
- Institute of Biology and Medical Genetics
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
| | - Justo Cabrera-González
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra, Barcelona
- Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra, Barcelona
- Spain
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
| |
Collapse
|
28
|
Self-assembly and drug release control of dual-responsive copolymers based on oligo(ethylene glycol)methyl ether methacrylate and spiropyran. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0677-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Skandalis A, Pispas S. pH- and thermo-responsive solution behavior of amphiphilic, linear triblock terpolymers. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Zhao Y, Guo W, Lu Q, Zhang S. Preparation of poly(butylene succinate)-poly[2-(dimethylamino)ethyl methacrylate] copolymers and their applications as carriers for drug delivery. POLYM INT 2018. [DOI: 10.1002/pi.5559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuping Zhao
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Weihong Guo
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Qian Lu
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Shiping Zhang
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| |
Collapse
|
31
|
Konishcheva E, Daubian D, Gaitzsch J, Meier W. Synthesis of Linear ABC Triblock Copolymers and Their Self-Assembly in Solution. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Evgeniia Konishcheva
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Davy Daubian
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Wolfgang Meier
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
32
|
Piloni A, Walther A, Stenzel MH. Compartmentalized nanoparticles in aqueous solution through hierarchical self-assembly of triblock glycopolymers. Polym Chem 2018. [DOI: 10.1039/c8py00792f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic block copolymers can elegantly assemble in water to form well-defined nano-objects and through smart design of the polymers it is possible to efficiently prepare functional materials for biomedical applications such as drug carriers.
Collapse
Affiliation(s)
- Alberto Piloni
- Centre for Advanced Macromolecular Design
- School of Chemistry
- UNSW
- Sydney
- Australia
| | - Andreas Walther
- Institute for Macromolecular Chemistry
- Stefan-Meier-Strasse 31
- University of Freiburg
- 79104 Freiburg
- Germany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- UNSW
- Sydney
- Australia
| |
Collapse
|