1
|
Destarac M, Guinaudeau A, Mazières S, Wilson J. Chain Transfer Kinetics of Rhodixan ® A1 RAFT/MADIX Agent. Molecules 2024; 29:6004. [PMID: 39770096 PMCID: PMC11678032 DOI: 10.3390/molecules29246004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Rhodixan® A1 is the trade name for O-ethyl S-(1-methoxycarbonylethyl)dithiocarbonate, a RAFT/MADIX agent used by Syensqo to produce block copolymer additives for aqueous formulations on an industrial scale. Chain transfer coefficients to Rhodixan® A1 determined for 25 different styrenic, acrylate, and acrylamide monomers were relatively low (0.6 < Ctr < 3.8) and evolved in the following order: styrenics < acrylates < acrylamides. The corresponding interchain transfer coefficients followed the same trend (0.6 < Ctr,PnXA1 < 5.9). In all cases, polymers with predetermined Mn are obtained at high monomer conversion, with dispersities inversely proportional to Ctr,PnXA1 in most cases. With the added benefit of the established excellent reactivity of Rhodixan® A1 towards unconjugated monomers such as vinyl esters, diallyl, or N-vinyl monomers, RAFT/MADIX is a fantastic technological toolbox for tailor-making complex copolymers from monomers of highly disparate reactivities.
Collapse
Affiliation(s)
- Mathias Destarac
- Laboratoire SOFTMAT, CNRS UMR 5623, University of Toulouse, University Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; (A.G.); (S.M.)
| | - Aymeric Guinaudeau
- Laboratoire SOFTMAT, CNRS UMR 5623, University of Toulouse, University Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; (A.G.); (S.M.)
- Syensqo, Centre de Recherche et Innovation Lyon, 85 Rue des Frères Perret, BP 62 69192 Saint Fons, France
| | - Stéphane Mazières
- Laboratoire SOFTMAT, CNRS UMR 5623, University of Toulouse, University Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; (A.G.); (S.M.)
| | - James Wilson
- Syensqo, Centre de Recherche et Innovation Aubervilliers, 52 Rue de la Haie Coq, 93308 Aubervilliers Cedex, France;
| |
Collapse
|
2
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Feuerpfeil A, Drache M, Jantke LA, Melchin T, Rodríguez-Fernández J, Beuermann S. Modeling Semi-Batch Vinyl Acetate Polymerization Processes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas Feuerpfeil
- Clausthal University of Technology, Institute of Technical Chemistry, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| | - Marco Drache
- Clausthal University of Technology, Institute of Technical Chemistry, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| | | | - Timo Melchin
- Wacker Chemie AG, Johannes-Hess-Str. 24, 84489 Burghausen, Germany
| | | | - Sabine Beuermann
- Clausthal University of Technology, Institute of Technical Chemistry, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
4
|
Edeleva M, Van Steenberge PH, Sabbe MK, D’hooge DR. Connecting Gas-Phase Computational Chemistry to Condensed Phase Kinetic Modeling: The State-of-the-Art. Polymers (Basel) 2021; 13:3027. [PMID: 34577928 PMCID: PMC8467432 DOI: 10.3390/polym13183027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, quantum chemical calculations (QCC) have increased in accuracy, not only providing the ranking of chemical reactivities and energy barriers (e.g., for optimal selectivities) but also delivering more reliable equilibrium and (intrinsic/chemical) rate coefficients. This increased reliability of kinetic parameters is relevant to support the predictive character of kinetic modeling studies that are addressing actual concentration changes during chemical processes, taking into account competitive reactions and mixing heterogeneities. In the present contribution, guidelines are formulated on how to bridge the fields of computational chemistry and chemical kinetics. It is explained how condensed phase systems can be described based on conventional gas phase computational chemistry calculations. Case studies are included on polymerization kinetics, considering free and controlled radical polymerization, ionic polymerization, and polymer degradation. It is also illustrated how QCC can be directly linked to material properties.
Collapse
Affiliation(s)
- Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
| | - Paul H.M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
| | - Maarten K. Sabbe
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
- Industrial Catalysis and Adsorption Technology (INCAT), Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium; (P.H.M.V.S.); (M.K.S.)
- Centre for Textile Science and Engineering (CTSE), Ghent University, Technologiepark 70a, 9052 Zwijnaarde, Belgium
| |
Collapse
|
5
|
Figueira FL, Wu YY, Zhou YN, Luo ZH, Van Steenberge PHM, D'hooge DR. Coupled matrix kinetic Monte Carlo simulations applied for advanced understanding of polymer grafting kinetics. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00407c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An innovative coupled matrix-based Monte Carlo (CMMC) concept has been applied to successfully assess the detailed description of the molecular build-up of linear and non-linear chains in the free-radical induced grafting of linear precursors chains.
Collapse
Affiliation(s)
| | - Yi-Yang Wu
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- Belgium
- Centre for Textile Science and Engineering (CTSE)
- Ghent University
| |
Collapse
|
6
|
Trigilio AD, Marien YW, Van Steenberge PHM, D’hooge DR. Gillespie-Driven kinetic Monte Carlo Algorithms to Model Events for Bulk or Solution (Bio)Chemical Systems Containing Elemental and Distributed Species. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro D. Trigilio
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | | | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70a, 9052 Gent, Belgium
| |
Collapse
|
7
|
Saldívar‐Guerra E. Numerical Techniques for the Solution of the Molecular Weight Distribution in Polymerization Mechanisms, State of the Art. MACROMOL REACT ENG 2020. [DOI: 10.1002/mren.202000010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Enrique Saldívar‐Guerra
- Centro de Investigación en Química AplicadaBlvd. Enrique Reyna 140 Saltillo Coahuila 25294 México
| |
Collapse
|
8
|
The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2020; 12:polym12061409. [PMID: 32586068 PMCID: PMC7361790 DOI: 10.3390/polym12061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022] Open
Abstract
One of the challenges for brush synthesis for advanced bioinspired applications using surface-initiated reversible deactivation radical polymerization (SI-RDRP) is the understanding of the relevance of confinement on the reaction probabilities and specifically the role of termination reactions. The present work puts forward a new matrix-based kinetic Monte Carlo platform with an implicit reaction scheme capable of evaluating the growth pattern of individual free and tethered chains in three-dimensional format during SI-RDRP. For illustration purposes, emphasis is on normal SI-atom transfer radical polymerization, introducing concepts such as the apparent livingness and the molecular height distribution (MHD). The former is determined based on the combination of the disturbing impact of termination (related to conventional livingness) and shielding of deactivated species (additional correction due to hindrance), and the latter allows structure-property relationships to be identified, starting at the molecular level in view of future brush characterization. It is shown that under well-defined SI-RDRP conditions the contribution of (shorter) hindered dormant chains is relevant and more pronounced for higher average initiator coverages, despite the fraction of dead chains being less. A dominance of surface-solution termination is also put forward, considering two extreme diffusion modes, i.e., translational and segmental. With the translational mode termination is largely suppressed and the living limit is mimicked, whereas with the segmental mode termination occurs more and the termination front moves upward alongside the polymer layer growth. In any case, bimodalities are established for the tethered chains both on the level of the chain length distribution and the MHD.
Collapse
|
9
|
Arraez FJ, Van Steenberge PHM, D’hooge DR. Conformational Distributions near and on the Substrate during Surface-Initiated Living Polymerization: A Lattice-Based Kinetic Monte Carlo Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00585] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
10
|
Study on MMA and BA Emulsion Copolymerization Using 2,4-Diphenyl-4-methyl-1-pentene as the Irreversible Addition-Fragmentation Chain Transfer Agent. Polymers (Basel) 2020; 12:polym12010080. [PMID: 31906596 PMCID: PMC7023643 DOI: 10.3390/polym12010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 11/17/2022] Open
Abstract
As a chain transfer agent, 2,4-diphenyl-4-methyl-1-pentene (αMSD) was first introduced in the emulsion binary copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA) based on an irreversible addition-fragmentation chain transfer (AFCT) mechanism. The effects of αMSD on molecular weight and its distribution, the degree of polymerization, polymerization rate, monomer conversion, particle size, and tensile properties of the formed latexes were systematically investigated. Its potential chain transfer mechanism was also explored according to the 1H NMR analysis. The results showed that the increase in the content of αMSD could lead to a decline in molecular weight, its distribution, and the degree of polymerization. The mass percentage of MMA in the synthesized polymers was also improved as the amounts of αMSD increased. The chain transfer coefficients of αMSD for MMA and BA were 0.62 and 0.47, respectively. The regulation mechanism of αMSD in the emulsion polymerization of acrylates was found to be consistent with Yasummasa's theory. Additionally, monomer conversion decreased greatly to 47.3% when the concentration of αMSD was higher than 1 wt% due to the extremely low polymerization rate. Moreover, the polymerization rate was also decreased probably due to the desorption and lower reactivity of the regenerative radicals from αMSD. Finally, the tensile properties of the resulting polyacrylate films were significantly affected due to the presence of αMSD.
Collapse
|
11
|
De Smit K, Marien YW, Van Geem KM, Van Steenberge PHM, D'hooge DR. Connecting polymer synthesis and chemical recycling on a chain-by-chain basis: a unified matrix-based kinetic Monte Carlo strategy. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00266f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer synthesis and subsequent depolymerisation/degradation are linked at the molecular level.
Collapse
Affiliation(s)
- Kyann De Smit
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | - Kevin M. Van Geem
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
12
|
Abreu CMR, Rezende TC, Fonseca AC, Guliashvili T, Bergerbit C, D’Agosto F, Yu LJ, Serra AC, Coote ML, Coelho JFJ. Polymerization of Vinyl Chloride at Ambient Temperature Using Macromolecular Design via the Interchange of Xanthate: Kinetic and Computational Studies. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Carlos M. R. Abreu
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Talita C. Rezende
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana C. Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Tamaz Guliashvili
- Cytosorbents, Inc., 7 Deer Park Drive, Monmouth Junction, New Jersey 08852, United States
| | - Cédric Bergerbit
- Université de Lyon, Université Lyon 1, CPE Lyon, CNRS UMR 5265, Chimie Catalyse Polymères et Procédés (C2P2), Villeurbanne 69616 CEDEX, France
| | - Franck D’Agosto
- Université de Lyon, Université Lyon 1, CPE Lyon, CNRS UMR 5265, Chimie Catalyse Polymères et Procédés (C2P2), Villeurbanne 69616 CEDEX, France
| | - Li-Juan Yu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Arménio C. Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jorge F. J. Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Devlaminck DJG, Van Steenberge PHM, Reyniers MF, D'hooge DR. Modeling of Miniemulsion Polymerization of Styrene with Macro-RAFT Agents to Theoretically Compare Slow Fragmentation, Ideal Exchange and Cross-Termination Cases. Polymers (Basel) 2019; 11:E320. [PMID: 30960304 PMCID: PMC6419184 DOI: 10.3390/polym11020320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 11/17/2022] Open
Abstract
A 5-dimensional Smith-Ewart based model is developed to understand differences for reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization with theoretical agents mimicking cases of slow fragmentation, cross-termination, and ideal exchange while accounting for chain length and monomer conversion dependencies due to diffusional limitations. The focus is on styrene as a monomer, a water soluble initiator, and a macro-RAFT agent to avoid exit/entry of the RAFT leaving group radical. It is shown that with a too low RAFT fragmentation rate coefficient it is generally not afforded to consider zero-one kinetics (for the related intermediate radical type) and that with significant RAFT cross-termination the dead polymer product is dominantly originating from the RAFT intermediate radical. To allow the identification of the nature of the RAFT retardation it is recommended to experimentally investigate in the future the impact of the average particle size (dp) on both the monomer conversion profile and the average polymer properties for a sufficiently broad dp range, ideally including the bulk limit. With decreasing particle size both a slow RAFT fragmentation and a fast RAFT cross-termination result in a stronger segregation and thus rate acceleration. The particle size dependency is different, allowing further differentiation based on the variation of the dispersity and end-group functionality. Significant RAFT cross-termination is specifically associated with a strong dispersity increase at higher average particle sizes. Only with an ideal exchange it is afforded in the modeling to avoid the explicit calculation of the RAFT intermediate concentration evolution.
Collapse
Affiliation(s)
- Dries J G Devlaminck
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
| | - Paul H M Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
| | - Marie-Françoise Reyniers
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
| | - Dagmar R D'hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium.
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 907, B-9052 Ghent, Belgium.
| |
Collapse
|
14
|
Marien YW, Van Steenberge PHM, R. D‘hooge D, Marin GB. Particle by Particle Kinetic Monte Carlo Tracking of Reaction and Mass Transfer Events in Miniemulsion Free Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02508] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Marien YW, Van Steenberge PHM, Pich A, D'hooge DR. Coupled stochastic simulation of the chain length and particle size distribution in miniemulsion radical copolymerization of styrene and N-vinylcaprolactam. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00218a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Kinetic Monte Carlo modeling is applied for the coupled simulation of the chain length and particle size distribution in isothermal batch miniemulsion copolymerization of styrene and N-vinylcaprolactam.
Collapse
Affiliation(s)
- Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- DWI – Leibniz Institute for Interactive Materials e.V
| | | | - Andrij Pich
- DWI – Leibniz Institute for Interactive Materials e.V
- 52074 Aachen
- Germany
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
16
|
Devlaminck DJG, Van Steenberge PHM, Reyniers MF, D’hooge DR. Deterministic Modeling of Degenerative RAFT Miniemulsion Polymerization Rate and Average Polymer Characteristics: Invalidity of Zero–One Nature at Higher Monomer Conversions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
D'hooge DR. In Silico Tracking of Individual Species Accelerating Progress in Macromolecular Engineering and Design. Macromol Rapid Commun 2018; 39:e1800057. [PMID: 29656408 DOI: 10.1002/marc.201800057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT); Technologiepark 914 Ghent 9052 Belgium
- Centre for Textile Science and Engineering (CSTE); Technologiepark 907 Ghent 9052 Belgium
| |
Collapse
|
18
|
Fierens SK, Van Steenberge PHM, Vermeire F, Reyniers M, Marin GB, D'hooge DR. An evaluation of the impact of SG1 disproportionation and the addition of styrene in NMP of methyl methacrylate. AIChE J 2018. [DOI: 10.1002/aic.16111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stijn K. Fierens
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Paul H. M. Van Steenberge
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Florence Vermeire
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Marie‐Françoise Reyniers
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Guy B. Marin
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
| | - Dagmar R. D'hooge
- Dept. of Materials, Textiles and Chemical Engineering, Laboratory for Chemical TechnologyGhent University, Technologiepark 914Gent B‐9052 Belgium
- Centre for Textiles Science and EngineeringGhent University, Technologiepark, 907Gent B‐9052 Belgium
| |
Collapse
|
19
|
|