1
|
Yang L, Nie CY, Han Y, Ye JM, Liu W, Yan CG. Construction and crystal structures of pillar[5]arene-based bis-[1]rotaxanes via quadruple hydrogen bonding of ureidopyrimidinone. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cui-Yin Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Mei Ye
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenlong Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
3
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
4
|
Shi Q, Wang X, Liu B, Qiao P, Li J, Wang L. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun (Camb) 2021; 57:12379-12405. [PMID: 34726202 DOI: 10.1039/d1cc04400a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocyclic host molecules play the central role in host-guest chemistry and supramolecular chemistry. The highly structural symmetry of macrocyclic host molecules can meet people's pursuit of aesthetics in molecular design, and generally means a balance of design, synthesis, properties and applications. For macrocyclic host molecules with highly symmetrical structures, building blocks, which could be described as repeat units as well, are the most fundamental elements for molecular design. The structural features and recognition ability of macrocyclic host molecules are determined by the building blocks and their connection patterns. Using different building blocks, different macrocyclic host molecules could be designed and synthesized. With decades of developments of host-guest chemistry and supramolecular chemistry, diverse macrocyclic host molecules with different building blocks have been designed and synthesized. Aromatic building blocks are a big family among the various building blocks used in constructing macrocyclic host molecules. In this feature article, the recent developments of macrocyclic host molecules with aromatic building blocks were summarized and discussed.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panyu Qiao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Liu Z, Zhang H, Han J. Crown ether-pillararene hybrid macrocyclic systems. Org Biomol Chem 2021; 19:3287-3302. [PMID: 33899894 DOI: 10.1039/d1ob00222h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A combination of Nobel macrocycle-crown ether and star macrocycle-pillararenes together in organic synthesis and material science is significant in obtaining hybrid systems, with rigid/flexible structural architecture, induced planar chirality, a negative cooperative effect and multiple fused cyclic hosts. In this review, we will discuss the synthesis/preparation of crown ether-pillararene hybrid macrocyclic systems by covalent bonds, supramolecular interactions and mechanical bonds, leading to hybrid compounds, supramolecular assemblies and mechanically interlocked molecules. The practical applications of crown ether-containing pillararenes will also be discussed in diverse areas, such as molecular recognition via fused multiple macrocycles and ion channels as well as external stimuli-responsive smart materials. We also call the attention of related researchers towards academic and technical issues about topological structures and applied functions in this fresh new fused macrocyclic field.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Chen YY, Gong GF, Fan YQ, Zhou Q, Zhang QP, Yao H, Zhang YM, Wei TB, Lin Q. A novel AIE-based supramolecular polymer gel serves as an ultrasensitive detection and efficient separation material for multiple heavy metal ions. SOFT MATTER 2019; 15:6878-6884. [PMID: 31414697 DOI: 10.1039/c9sm01177c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, ultrasensitive stimuli-responsive materials have received extensive attention due to their high sensitivity and wide applications. Herein, we report a novel approach to design ultrasensitive responsive materials by rationally introducing the aggregation-induced emission (AIE) effect into supramolecular polymer gels. According to this approach, by rationally introducing self-assembly moieties and a fluorophore, the obtained gelator DNS can act as an AIEgen; it showed strong AIE after aggregating into the supramolecular polymer gel GDNS. More interestingly, because the aggregation of DNS led to amplification of the detective signal, the AIE-based supramolecular polymer gel GDNS could ultrasensitively detect the heavy metal ions Hg2+, Cu2+, and Fe3+ by a signal amplification mechanism; the lowest detection limits reached 10-11 M. In addition, the xerogel of GDNS could adsorb and separate Hg2+, Cu2+, and Fe3+ from aqueous solution with favourable adsorption properties, and the adsorption rates ranged from 94.70% to 99.37%. Furthermore, the gel GDNS could act as a convenient test kit for Hg2+, Cu2+, and Fe3+ as well as a smart fluorescent display material.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xiao T, Zhong W, Xu L, Sun XQ, Hu XY, Wang L. Supramolecular vesicles based on pillar[n]arenes: design, construction, and applications. Org Biomol Chem 2019; 17:1336-1350. [PMID: 30638249 DOI: 10.1039/c8ob03095b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular vesicles have attracted considerable attention due to their advantages of facile construction, high-cargo-loading capacity, and good biocompatibility. Pillar[n]arenes are a unique family of supramolecular macrocycles, exhibiting excellent features and broad applications due to their intrinsic topology and high functionality. In the past decade, the construction of pillar[n]arene-based supramolecular vesicles has been continuously attempted and developed rapidly. In this review, we mainly summarize the significant advancements of such supramolecular vesicles in the last three years. By showing some representative examples, the design strategies, construction methods, and potential applications of these dynamic nanocarriers are discussed in detail. In particular, the responsiveness of such vesicles to various external stimuli and their applications in drug delivery are highlighted. The outstanding performance of pillar[n]arene-based supramolecular vesicles would definitely enrich the family of supramolecular vesicles and promote the development of dynamic supramolecular materials.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | |
Collapse
|
9
|
Xiao T, Zhou L, Xu L, Zhong W, Zhao W, Sun XQ, Elmes RB. Dynamic materials fabricated from water soluble pillar[n]arenes bearing triethylene oxide groups. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Xiao T, Zhong W, Qi L, Gu J, Feng X, Yin Y, Li ZY, Sun XQ, Cheng M, Wang L. Ring-opening supramolecular polymerization controlled by orthogonal non-covalent interactions. Polym Chem 2019. [DOI: 10.1039/c9py00312f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The π–π interaction has been successfully utilized to orthogonally regulate the supramolecular polymerization driven by quadruple hydrogen bonding.
Collapse
|
11
|
Xiao T, Zhong W, Zhou L, Xu L, Sun XQ, Elmes RB, Hu XY, Wang L. Artificial light-harvesting systems fabricated by supramolecular host–guest interactions. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Xiao T, Xu L, Zhou L, Sun XQ, Lin C, Wang L. Dynamic hydrogels mediated by macrocyclic host-guest interactions. J Mater Chem B 2018; 7:1526-1540. [PMID: 32254900 DOI: 10.1039/c8tb02339e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels have attracted increasing research interest in recent years due to their dynamic properties and potential applications in biomaterials. Concurrently, macrocycle-based host-guest interactions have played an important role in the development of supramolecular chemistry. Recently, research towards dynamic hydrogels mediated by various macrocyclic host-guest interactions has been gradually disclosed. In this review, we will outline the burgeoning progress in the development of functional hydrogels mediated by various host molecules, such as cyclodextrins, cucurbit[n]urils, calix[n]arenes, pillar[n]arenes, and other macrocycles. Smart hydrogels with outstanding properties, like biocompatibility, toughness, and self-healing, are mainly focused. We believe that this review will highlight the potential of dynamic hydrogels mediated by macrocycle-based host-guest interactions.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | |
Collapse
|
13
|
Xiao T, Xu L, Zhong W, Zhou L, Sun XQ, Hu XY, Wang L. Advanced Functional Materials Constructed from Pillar[n]arenes. Isr J Chem 2018. [DOI: 10.1002/ijch.201800026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Lixiang Xu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Weiwei Zhong
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Ling Zhou
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Xiao-Qiang Sun
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Leyong Wang
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
14
|
Li ZY, Su HK, Tong HX, Yin Y, Xiao T, Sun XQ, Jiang J, Wang L. Calix[4]arene containing thiourea and coumarin functionality as highly selective fluorescent and colorimetric chemosensor for fluoride ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:307-312. [PMID: 29704730 DOI: 10.1016/j.saa.2018.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
A novel calix[4]arene based chemosensor L which contains coumarin and thiourea group has been synthesized and characterized. Interestingly, probe L exhibits both fluorescent and colorimetric response to fluoride anion with high selectivity and sensitivity. The addition of F- to a solution of probe L resulted in obvious naked-eye color change from colorless to orange under daylight and prominent fluorescence quenching. Further studies showed that the recognition process was less affected by other anions. The binding property of L with F- was studied by a combination of combination of various spectroscopic techniques, such as absorption spectra, fluorescence titration, Job's plot and 1H NMR titration. We are anticipating that this architecture with functional group attached to upper rim of calix[4]arene platform may provide a new approach for the development of F- chemosensor.
Collapse
Affiliation(s)
- Zheng-Yi Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hong-Kui Su
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hong-Xiao Tong
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yue Yin
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Tangxin Xiao
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiao-Qiang Sun
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Juli Jiang
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Wang Q, Zhang P, Xu J, Xia B, Tian L, Chen J, Li J, Lu F, Shen Q, Lu X, Huang W, Fan Q. NIR-Absorbing Dye Functionalized Supramolecular Vesicles for Chemo-photothermal Synergistic Therapy. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Peng Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingzeng Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Bing Xia
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lu Tian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jie Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qingming Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
16
|
Recent advances of functional gels controlled by pillar[n]arene-based host–guest interactions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Chen JF, Lin Q, Zhang YM, Yao H, Wei TB. Pillararene-based fluorescent chemosensors: recent advances and perspectives. Chem Commun (Camb) 2017; 53:13296-13311. [DOI: 10.1039/c7cc08365c] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This feature article summarizes recent research in the pillararene-based fluorescent chemosensor field in terms of ion sensing, small molecule recognition, biomolecule detection, fluorescent supramolecular aggregates, and biomedical imaging.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|