1
|
Xie S, Lu M, Wang P, Shi R. Current-Regulated Selective Nickel-Catalyzed Electroreductive Cross-Electrophile Carbonylation to β/γ-Hydroxy Ketones. Angew Chem Int Ed Engl 2025; 64:e202418147. [PMID: 39714447 DOI: 10.1002/anie.202418147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The nickel catalyzed multi-component cross-electrophile carbonylation which emerges as a powerful and efficient method for constructing diverse ketones has attracted increasing attention of organic chemists. However, the selectivity of this reaction poses a significant challenge. In this work, we have developed a current-regulated selective nickel-catalyzed electroreductive cross-electrophile carbonylation, which offers a direct convergent synthesis of β/γ-hydroxy ketones, which represent pivotal structural motifs found in numerous natural products, bioactive molecules, pharmaceutical compounds, and essential building blocks. A diverse range of multi-substituted β/γ-hydroxyketones can be accessed with high chemo- and regioselectivity from epoxides, aryl iodides, and a simple CO source (ClCO2Pr). This electroreductive carbonylation strategy exhibits high functional group tolerance and can be applied in late-stage derivatization of drugs and natural products. Notably, chiral epoxides can be employed as reactants with chirality retention, enabling the synthesis of asymmetric β-hydroxy ketones. Our approach demonstrates a novel electrochemical selectivity-controlled strategy in multi-component cross-electrophile coupling.
Collapse
Affiliation(s)
- Shentong Xie
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an 710049, P. R. China
| | - Ming Lu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Pengcheng Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Renyi Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an 710049, P. R. China
| |
Collapse
|
2
|
Mondal M, Saha A. Dithiocarbamate as a Carbonyl Alternative in Pd-Catalyzed Carbonylative Homocoupling of Organoboronic Acids. J Org Chem 2025; 90:52-58. [PMID: 39701947 DOI: 10.1021/acs.joc.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We have developed a novel protocol for carbonylative homocoupling of arylboronic acids using dithiocarbamate esters as the carbonyl alternative. A series of arylboronic acids underwent smooth reaction with dithiocarbamate ester (Me2NCS2Me) in the presence of Pd(PPh3)2Cl2 catalyst, Cu(OAc)2·H2O additive, and Na2CO3 in DCE solvent, producing the biaryl ketones efficiently. The mechanism has been studied with the help of several control experiments that reveal the probability of thioamide intermediacy. Chemoselective homocoupling allows the postsynthetic modification of the product.
Collapse
Affiliation(s)
- Manas Mondal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Kolekar YA, Saptal VB, Bhanage BM. Carbonylative Self-Coupling of Aryl Boronic Acids Using a Confined Pd Catalyst within Melamine Dendron and Fibrous Nano-Silica: A CO Surrogate Approach. Chemistry 2023; 29:e202301381. [PMID: 37332053 DOI: 10.1002/chem.202301381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Development of heterogeneous catalysts with tunable activity and selectivity has posed a persistent challenge. This study addresses this challenge by fabricating a hybrid environment through the combination of mesoporous silica and N-rich melamine dendron via covalent grafting, allowing for controllable growth and encapsulation of Pd NPs. This catalyst presented an excellent catalytic activity for the oxidative carbonylative self-coupling of aryl boronic acids to afford symmetric biaryl ketones using N-formyl saccharin as a sustainable solid CO source and Cu as a co-catalyst.
Collapse
Affiliation(s)
- Yuvraj A Kolekar
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Vitthal B Saptal
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Bhalchandra M Bhanage
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
4
|
Halder P, Talukdar V, Iqubal A, Das P. Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry. J Org Chem 2022; 87:13965-13979. [PMID: 36217780 DOI: 10.1021/acs.joc.2c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The carbonyl group forms an integral part of several drug molecules and materials; hence, synthesis of carbonylated compounds remains an intriguing area of research for synthetic and medicinal chemists. Handling toxic CO gas has several limitations; thus, using safe and effective techniques for in or ex situ generation of carbon monoxide from nontoxic and cheap precursors is highly desirable. Among several precursors that have been explored for the generation of CO gas, chloroform can prove to be a promising CO surrogate due to its cost-effectiveness and ready availability. However, the one-pot chloroform-based carbonylation reaction requires strong basic conditions for hydrolysis of chloroform that may affect functional group tolerability of substrates and scale-up reactions. These limitations can be overcome by a two-chamber reactor (COware) that can be utilized for ex situ CO generation through hydrolysis of chloroform in one chamber and facilitating safe carbonylation reactions in another chamber under mild conditions. The versatility of this "Chloroform-COware" technique is explored through palladium-catalyzed aminocarbonylation of medicinally relevant heterocyclic cores, viz., isoquinoline and quinoline.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| |
Collapse
|
5
|
DMF as CO Surrogate in Carbonylation Reactions: Principles and Application to the Synthesis of Heterocycles. Catalysts 2021. [DOI: 10.3390/catal11121531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transition metal-catalyzed carbonylation reactions have emerged as one of the most relevant synthetic approaches for the preparation of carbonyl-containing molecules. The most commonly used protocol for the insertion of a carbonyl moiety is the use of carbon monoxide (CO) but, due to its toxic and explosive nature, this process is not suitable at an industrial scale. More recently, the chemistry of CO surrogates has received large attention as a way to use less expensive and more environmentally friendly methods. Among the various CO surrogates, N,N-dimethylformamide (DMF) has been paid greater attention due to its low cost and easy availability. This mini-review gives appealing insights into the application of DMF as a CO surrogate in metal-catalyzed carbonylations; in particular, in the first part we will give a general state of the art of these reactions for the preparation of carbonyl-containing molecules; then, we will take into account all the various synthetic approaches for the metal-catalyzed carbonylative synthesis of heterocycles using DMF as a CO surrogate. Each protocol has been discussed critically in order to screen the best synthetic method and to offer perspective on trends and future directions in this field.
Collapse
|
6
|
Yang H, Zhang J, Chen Z, Wu XF. TFBen (Benzene-1,3,5-triyl triformate): A Powerful and Versatile CO Surrogate. CHEM REC 2021; 22:e202100220. [PMID: 34591367 DOI: 10.1002/tcr.202100220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Carbonylative reactions by the using of CO surrogates constitute a facile avenue for the assembly of valuable carbonyl-containing compounds due to the colorless, toxic, flammable, and not easy-handing character of carbon monoxide gas. Recent advances in the carbonylative transformations with TFBen (benzene-1,3,5-triyl triformate) as a safe and convenient CO precursor are systematically summarized and discussed, which can be divided into three parts based on the patterns of the obtained products. This Review focuses on the discussion of the application of TFBen in carbonylative synthesis of various carbonyl-containing compounds.
Collapse
Affiliation(s)
- Hefei Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, People's Republic of China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
7
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|
8
|
Niakan M, Asadi Z, Khosrozadeh F. Palladium imine-pyridine-imine complex immobilized on graphene oxide as a recyclable catalyst for the carbonylative homo-coupling of aryl halides. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1861257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mahsa Niakan
- Department of Chemistry, School of Sciences, Shiraz University, Shiraz, Iran
| | - Zahra Asadi
- Department of Chemistry, School of Sciences, Shiraz University, Shiraz, Iran
| | - Fatemeh Khosrozadeh
- Department of Chemistry, School of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Chen Z, Wang LC, Wu XF. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem Commun (Camb) 2020; 56:6016-6030. [DOI: 10.1039/d0cc01504k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in the carbonylative synthesis of heterocycles by using diverse CO surrogates as sources of CO are summarized and discussed.
Collapse
Affiliation(s)
- Zhengkai Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Le-Cheng Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
10
|
Shaifali, Ram S, Thakur V, Das P. Synthesis of α,β-alkynyl ketones via the nickel catalysed carbonylative Sonogashira reaction using oxalic acid as a sustainable C1 source. Org Biomol Chem 2019; 17:7036-7041. [PMID: 31290509 DOI: 10.1039/c9ob01064e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and economic nickel-dppb catalyzed, carbonylative Sonogashira cross-coupling reaction was demonstrated to provide rapid access to various α,β-alkynyl ketones from aryl iodides and terminal alkynes using oxalic acid as the ex situ C1 source in a double vial (DV) system. Notably, the role of the ligand in combination with the Ni catalyst for the selective formation of carbonylative Sonogashira products was investigated and supported with control experiments. Yet, no reports are available for carbonylative Sonogashira coupling by using a CO-surrogate under Ni-catalyzed conditions. In this process, for the first time, oxalic acid is used as an ex situ solid, bench stable, easy to handle and efficient CO surrogate in a DV-system for the carbonylative Sonogashira coupling reaction with vast substrate scope.
Collapse
Affiliation(s)
- Shaifali
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| | - Shankar Ram
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| | - Vandna Thakur
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| | - Pralay Das
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| |
Collapse
|
11
|
Gaikwad VV, Mane PA, Dey S, Bhanage BM. Dppf‐Ligated Palladium Complex as an Efficient Catalyst for the Synthesis of Biaryl Ketones Using Co
2
(CO)
8
as a C1 Source with High TON and TOF. ChemistrySelect 2019. [DOI: 10.1002/slct.201901930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vinayak V. Gaikwad
- Department of Chemistry, Institute of Chemical TechnologyN.Parekh Marg, Matunga, Mumbai 400 019 Maharashtra India)
| | - Pravin A. Mane
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400 085 India
| | - Sandip Dey
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400 085 India
- Homi Bhabha National InstituteTraining School Complex Mumbai 400 094 India
| | - Bhalchandra M. Bhanage
- Department of Chemistry, Institute of Chemical TechnologyN.Parekh Marg, Matunga, Mumbai 400 019 Maharashtra India)
| |
Collapse
|
12
|
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan KV, Das P. Chloroform as a CO surrogate: applications and recent developments. Org Biomol Chem 2019; 17:5212-5222. [PMID: 31080990 DOI: 10.1039/c9ob00886a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carbonyl moiety is one of the indispensable sub-units in organic synthesis with significant applications in medicinal as well as materials chemistry. Hence the insertion of a carbonyl group via simple and highly efficient routes has been one of the most challenging tasks for organic chemists. Though the direct utilisation of CO gas in carbonylation is the fundamental procedure for the construction of carbonyl compounds, it has certain drawbacks due to its toxic and explosive nature. As a result, the need for cheap and efficient CO surrogates has gained much attention nowadays by which CO gas can be easily generated in situ or ex situ. In this review we discuss the advantages of chloroform as CO surrogate and have surveyed recent carbonylation reactions where chloroform has been used as CO source.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Applied Chemistry, IIT(ISM) Dhanbad, Dhanbad 826004, India.
| | | | | | | | | | | |
Collapse
|
13
|
Neumann KT, Donslund AS, Andersen TL, Nielsen DU, Skrydstrup T. Synthesis of Aliphatic Carboxamides Mediated by Nickel NN2
-Pincer Complexes and Adaptation to Carbon-Isotope Labeling. Chemistry 2018; 24:14946-14949. [DOI: 10.1002/chem.201804077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Thomas L. Andersen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Dennis U. Nielsen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
14
|
Le Bras J, Muzart J. Recent Uses of N, N-Dimethylformamide and N, N-Dimethylacetamide as Reagents. Molecules 2018; 23:E1939. [PMID: 30081462 PMCID: PMC6222515 DOI: 10.3390/molecules23081939] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
N,N-Dimethylformamide and N,N-dimethylacetamide are multipurpose reagents which deliver their own H, C, N and O atoms for the synthesis of a variety of compounds under a number of different experimental conditions. The review mainly highlights the corresponding literature published over the last years.
Collapse
Affiliation(s)
- Jean Le Bras
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, 51687 Reims CEDEX 2, France.
| | - Jacques Muzart
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, 51687 Reims CEDEX 2, France.
| |
Collapse
|
15
|
Peng JB, Wu FP, Li D, Qi X, Ying J, Wu XF. Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones. J Org Chem 2018; 83:6788-6792. [DOI: 10.1021/acs.joc.8b00806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Fu-Peng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Da Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
16
|
Peng JB, Wu FP, Wu XF. First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem Rev 2018; 119:2090-2127. [DOI: 10.1021/acs.chemrev.8b00068] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Fu-Peng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
17
|
Chen C, Tan H, Liu B, Yue C, Liu W. ATRA-like alkylation–peroxidation of alkenes with trichloromethyl derivatives by the combination of tBuOOH and NEt3. Org Chem Front 2018. [DOI: 10.1039/c8qo00868j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This protocol provides a unique and innovative approach to the construction of α-tert-butylperoxy-β-dichloromethyl alkanes, employing CHCl3 as an alkylating reagent to provide a –CHCl2 group, and TBHP as an oxidant to provide an α-tBuOO group.
Collapse
Affiliation(s)
- Cui Chen
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Hua Tan
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Bifu Liu
- School of Chemistry and Material Engineering
- Huizhou University
- Huizhou 516007
- China
| | - Chaochao Yue
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Weibing Liu
- College of Chemical Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| |
Collapse
|
18
|
Dindarloo Inaloo I, Majnooni S. Ureas as safe carbonyl sources for the synthesis of carbamates with deep eutectic solvents (DESs) as efficient and recyclable solvent/catalyst systems. NEW J CHEM 2018. [DOI: 10.1039/c8nj02624f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A simple, efficient and eco-friendly one-pot synthesis of primary, N-mono- and N-disubstituted carbamates is developed from ureas.
Collapse
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry
- University of Isfahan
- Isfahan 81746-73441
- Iran
| |
Collapse
|
19
|
Andersen TL, Donslund AS, Neumann KT, Skrydstrup T. Carbonylative Coupling of Alkyl Zinc Reagents with Benzyl Bromides Catalyzed by a Nickel/NN
2
Pincer Ligand Complex. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas L. Andersen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
20
|
Andersen TL, Donslund AS, Neumann KT, Skrydstrup T. Carbonylative Coupling of Alkyl Zinc Reagents with Benzyl Bromides Catalyzed by a Nickel/NN 2 Pincer Ligand Complex. Angew Chem Int Ed Engl 2017; 57:800-804. [PMID: 29193522 DOI: 10.1002/anie.201710089] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Indexed: 12/22/2022]
Abstract
An efficient catalytic protocol for the three-component assembly of benzyl bromides, carbon monoxide, and alkyl zinc reagents to give benzyl alkyl ketones is described, and represents the first nickel-catalyzed carbonylative coupling of two sp3 -carbon fragments. The method, which relies on the application of nickel complexed with an NN2 -type pincer ligand and a controlled release of CO gas from a solid precursor, works well with a range of benzylic bromides. Mechanistic studies suggest the intermediacy of carbon-centered radicals.
Collapse
Affiliation(s)
- Thomas L Andersen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|