1
|
Dobreva L, Atanasova N, Donchev P, Krumova E, Abrashev R, Karakirova Y, Mladenova R, Tolchkov V, Ralchev N, Dishliyska V, Danova S. Candidate-Probiotic Lactobacilli and Their Postbiotics as Health-Benefit Promoters. Microorganisms 2024; 12:1910. [PMID: 39338583 PMCID: PMC11434380 DOI: 10.3390/microorganisms12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Lactobacillus species are widely recognized for their probiotic potential, focusing on their mechanisms of health benefits and protection. Here we conducted an in vitro investigation of the probiotic potential with a role in microbiome homeostasis of four strains: Lactiplantibacillus plantarum L6 and F53, Ligilactobacillus salivarius 1, and Lactobacillus helveticus 611. A broad spectrum of antibacterial and antifungal activity was determined. The strain-specific inhibition of Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, and saprophytic/toxigenic fungi makes them promising as protective cultures. DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) measurements showed that tested samples had strain-specific capacity for scavenging of radicals. The molecular base for the antioxidant potential of two lyophilized forms of active strains was investigated by electron paramagnetic resonance spectroscopy. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, with fractions of the most active postbiotics obtained by SEC-FPLC (fast protein liquid chromatography) analysis, showed a wide variety of effects on the growth of a K562 myeloid leukemia cell line. The IC50 (half-maximal inhibitory concentration) of L. salivarius 1 was determined to be 46.15 mg/mL. The proven in vitro functionality of the selected lactobacilli make them suitable for development of target probiotics with specific beneficial effects expected in vivo. Further investigations on produced postbiotics and safety have to be completed before they can be considered as scientifically proven probiotic strains.
Collapse
Affiliation(s)
- Lili Dobreva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Nikoleta Atanasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Petar Donchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Yordanka Karakirova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ralitsa Mladenova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladimir Tolchkov
- National Center of Infectious and Parasitic Diseases, Yanko Sakuzov Blvd 26, 1504 Sofia, Bulgaria
| | - Nikola Ralchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Ha N, Lee EJ. Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium. J Microbiol 2023; 61:289-296. [PMID: 36862278 DOI: 10.1007/s12275-023-00027-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+-dependent riboswitch in its 5' UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcriptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.
Collapse
Affiliation(s)
- Nakyeong Ha
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Huynh U, Zastrow ML. Metallobiology of Lactobacillaceae in the gut microbiome. J Inorg Biochem 2023; 238:112023. [PMID: 36270041 PMCID: PMC9888405 DOI: 10.1016/j.jinorgbio.2022.112023] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
Abstract
Lactobacillaceae are a diverse family of lactic acid bacteria found in the gut microbiota of humans and many animals. These bacteria exhibit beneficial effects on intestinal health, including modulating the immune system and providing protection against pathogens, and many species are frequently used as probiotics. Gut bacteria acquire essential metal ions, like iron, zinc, and manganese, through the host diet and changes to the levels of these metals are often linked to alterations in microbial community composition, susceptibility to infection, and gastrointestinal diseases. Lactobacillaceae are frequently among the organisms increased or decreased in abundance due to changes in metal availability, yet many of the molecular mechanisms underlying these changes have yet to be defined. Metal requirements and metallotransporters have been studied in some species of Lactobacillaceae, but few of the mechanisms used by these bacteria to respond to metal limitation or excess have been investigated. This review provides a current overview of these mechanisms and covers how iron, zinc, and manganese impact Lactobacillaceae in the gut microbiota with an emphasis on their biochemical roles, requirements, and homeostatic mechanisms in several species.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
4
|
Uppalapati SR, Vazquez-Torres A. Manganese Utilization in Salmonella Pathogenesis: Beyond the Canonical Antioxidant Response. Front Cell Dev Biol 2022; 10:924925. [PMID: 35903545 PMCID: PMC9315381 DOI: 10.3389/fcell.2022.924925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The metal ion manganese (Mn2+) is equally coveted by hosts and bacterial pathogens. The host restricts Mn2+ in the gastrointestinal tract and Salmonella-containing vacuoles, as part of a process generally known as nutritional immunity. Salmonella enterica serovar Typhimurium counteract Mn2+ limitation using a plethora of metal importers, whose expression is under elaborate transcriptional and posttranscriptional control. Mn2+ serves as cofactor for a variety of enzymes involved in antioxidant defense or central metabolism. Because of its thermodynamic stability and low reactivity, bacterial pathogens may favor Mn2+-cofactored metalloenzymes during periods of oxidative stress. This divalent metal catalyzes metabolic flow through lower glycolysis, reductive tricarboxylic acid and the pentose phosphate pathway, thereby providing energetic, redox and biosynthetic outputs associated with the resistance of Salmonella to reactive oxygen species generated in the respiratory burst of professional phagocytic cells. Combined, the oxyradical-detoxifying properties of Mn2+ together with the ability of this divalent metal cation to support central metabolism help Salmonella colonize the mammalian gut and establish systemic infections.
Collapse
Affiliation(s)
- Siva R. Uppalapati
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| |
Collapse
|
5
|
Manganese Modulates Metabolic Activity and Redox Homeostasis in Translationally Blocked Lactococcus cremoris, Impacting Metabolic Persistence, Cell Culturability, and Flavor Formation. Microbiol Spectr 2022; 10:e0270821. [PMID: 35638825 PMCID: PMC9241929 DOI: 10.1128/spectrum.02708-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2,000-fold), while the remaining 10 significant proteome changes were between 1.4- and 4-fold. Further investigation in translationally blocked (TB), nongrowing cells showed that Mn supplementation (20 μM) led to approximately 1.5 X faster acidification compared with Mn-free conditions. However, this faster acidification stagnated within 24 h, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, nongrowing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state. IMPORTANCE In nature as well as in various biotechnology applications, microorganisms are often in a nongrowing state and their metabolic persistence determines cell survival and functionality. Industrial examples are dairy fermentations where bacteria remain active during the ripening phases that can take up to months and even years. Here we investigated environmental factors that can influence lactococcal metabolic persistence throughout such prolonged periods. We found that in the absence of manganese, acidification of nongrowing cells remained active for weeks while in the presence of manganese it stopped within 1 day. The latter coincided with the accumulation of amino acid derived volatile metabolites. Based on metabolic conversions, proteome analysis, and a reporter assay, we demonstrated that the manganese elicited effects were NADH dependent. Overall the results show the effect of environmental modulation on prolonged cell-based catalysis, which is highly relevant to non-growing cells in nature and biotechnological applications.
Collapse
|
6
|
Huynh U, Qiao M, King J, Trinh B, Valdez J, Haq M, Zastrow ML. Differential Effects of Transition Metals on Growth and Metal Uptake for Two Distinct Lactobacillus Species. Microbiol Spectr 2022; 10:e0100621. [PMID: 35080431 PMCID: PMC8791193 DOI: 10.1128/spectrum.01006-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Muxin Qiao
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - John King
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Brittany Trinh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Juventino Valdez
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Marium Haq
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Melissa L. Zastrow
- Department of Chemistry, University of Houston, Houston, Texas, United States
| |
Collapse
|
7
|
Manganese Privation-Induced Transcriptional Upregulation of the Class IIa Bacteriocin Plantaricin 423 in Lactobacillus plantarum Strain 423. Appl Environ Microbiol 2021; 87:e0097621. [PMID: 34406833 DOI: 10.1128/aem.00976-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plantaricin 423 is produced by Lactobacillus plantarum 423 using the pla biosynthetic operon located on the 8,188-bp plasmid pPLA4. As with many class IIa bacteriocin operons, the pla operon carries biosynthetic genes (plaA, precursor peptide; plaB, immunity; plaC, accessory; and plaD, ABC transporter) but does not carry local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins, such as plantaricin 423. In this study, phylogenetic analysis of class IIa immunity proteins indicated that at least three distinct clades exist, which were then used to subgroup the class IIa operons. It became evident that the absence of classical quorum-sensing genes on mobile bacteriocin-encoding elements is a predisposition of the subgroup that includes plantaricin 423, pediocin AcH/PA-1, divercin V41, enterocin A, leucocin-A and -B, mesentericin Y105, and sakacin G. Further analysis of the subgroup suggested that the regulation of these class IIa operons is linked to transition metal homeostasis in the host. By using a fluorescent promoter-reporter system in Lactobacillus plantarum 423, transcriptional regulation of plantaricin 423 was shown to be upregulated in response to manganese privation. IMPORTANCE Lactic acid bacteria hold huge industrial application and economic value, especially bacteriocinogenic strains, which further aids in the exclusion of specific foodborne pathogens. Since bacteriocinogenic strains are sought after, it is equally important to understand the mechanism of bacteriocin regulation. This is currently an understudied aspect of class IIa operons. Our research suggests the existence of a previously undescribed mode of class IIa bacteriocin regulation, whereby bacteriocin expression is linked to management of the producer's transition metal homeostasis. This delocalized metalloregulatory model may fundamentally affect the selection of culture conditions for bacteriocin expression and change our understanding of class IIa bacteriocin gene transfer dynamics in a given microbiome.
Collapse
|
8
|
Poddar D, de Jonge MD, Howard DL, Palmer J, Ainscough EW, Singh H, Haverkamp RG, Jameson GB. Manganese accumulation in probiotic Lactobacillus paracasei ATCC 55544 analyzed by synchrotron X-ray fluorescence microscopy and impact of accumulation on the bacterial viability following encapsulation. Food Res Int 2021; 147:110528. [PMID: 34399506 DOI: 10.1016/j.foodres.2021.110528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023]
Abstract
Lactobacillus spp. are known to accumulate large amounts of inorganic manganese, which protects against oxidative damage by scavenging free radicals. The ability of probiotic L. paracasei ATCC 55544 to maintain viability during long-term ambient storage may be enhanced by this microorganism's ability to accumulate manganese, which may act as a free radical scavenger. To investigate this hypothesis, X-ray fluorescence microscopy (XFM) was employed to determine the changes in the elemental composition of L. paracasei during growth in the MRS medium with or without added manganese. Moreover, manganese uptake by cells as a function of physiological growth state, early log vs. stationary phase was evaluated. The semiquantitative X-ray fluorescence microscopy results revealed that lower levels of manganese accumulation occurred during the early log phase of bacterial growth of L. paracasei cells (0.0064 µg/cm2) compared with the stationary phase cells (0.1355 µg/cm2). L. paracasei cells grown in manganese deficient MRS medium resulted in lower manganese uptake by cells (0.0027 µg/cm2). The L. paracasei cells were further embedded in milk powder matrix using a fluidized-bed drying technique and stored at a water activity (aw) of 0.33 at 25 °C for 15 days. The viability counts of L. paracasei cells grown in MRS medium harvested after 18 h growth and embedded in milk powder matrix retained viability of (9.19 ± 0.12 log CFU/g). No viable L. paracasei cells were observed in the case of embedded L. paracasei cells grown in manganese-deficient MRS medium harvested after 18 h growth or in the case of L. paracasei cells harvested after 4 h when grown in MRS medium. The lower level of manganese accumulation was found to be related to the loss of bacterial viability during storage.
Collapse
Affiliation(s)
- Devastotra Poddar
- Department of Nutrition, Belda College, Vidyasagar University, Paschim Medinipur, West Bengal, India; Riddet Institute, Massey University, Palmerston North, New Zealand.
| | | | | | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Eric W Ainscough
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Richard G Haverkamp
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Geoffrey B Jameson
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
9
|
Gao X, Kong J, Zhu H, Mao B, Cui S, Zhao J. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J Appl Microbiol 2021; 132:802-821. [PMID: 34365708 DOI: 10.1111/jam.15251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023]
Abstract
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.
Collapse
Affiliation(s)
- Xinwei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S. Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiol Rev 2021; 45:6284802. [PMID: 34037759 PMCID: PMC8632737 DOI: 10.1093/femsre/fuab028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Manganese (Mn2+) is an essential trace element within organisms spanning the entire tree of life. In this review, we provide an overview of Mn2+ transport and the regulation of its homeostasis in bacteria, with a focus on its functions beyond being a cofactor for enzymes. Crucial differences in Mn2+ homeostasis exist between bacterial species that can be characterized to have an iron- or manganese-centric metabolism. Highly iron-centric species require minimal Mn2+ and mostly use it as a mechanism to cope with oxidative stress. As a consequence, tight regulation of Mn2+ uptake is required, while organisms that use both Fe2+ and Mn2+ need other layers of regulation for maintaining homeostasis. We will focus in detail on manganese-centric bacterial species, in particular lactobacilli, that require little to no Fe2+ and use Mn2+ for a wider variety of functions. These organisms can accumulate extraordinarily high amounts of Mn2+ intracellularly, enabling the nonenzymatic use of Mn2+ for decomposition of reactive oxygen species while simultaneously functioning as a mechanism of competitive exclusion. We further discuss how Mn2+ accumulation can provide both beneficial and pathogenic bacteria with advantages in thriving in their niches.
Collapse
Affiliation(s)
- Elleke F Bosma
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | - Martin H Rau
- Chr. Hansen A/S, Discovery, R&D, 2970 Hoersholm, Denmark
| | | | - Solvej Siedler
- Corresponding author: Boege Allé 10-12, 2970 Hoersholm, Denmark. Tel: +45 52 18 08 25; E-mail:
| |
Collapse
|
11
|
Feng S, Hou S, Cui Y, Tong Y, Yang H. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus. J Ind Microbiol Biotechnol 2019; 47:21-33. [PMID: 31758413 DOI: 10.1007/s10295-019-02247-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023]
Abstract
Bioleaching, an alternative environmental smelting technology, typically uses high concentrations of heavy metal ions, especially in the subsequent phase, due to metal ion accumulation from the mineral. In this study, we analyzed the overall response of the bioleaching microorganism Acidithiobacillus caldus to copper stress through physiological and transcriptomic analyses. Scanning electron microscopy results showed higher extracellular polymeric substances secretion and cell aggregation under copper stress. Intracellular levels of glutamic acid, glycine and cysteine increased, favoring the synthesis of glutathione for maintenance of the oxidation-reduction state. GSH, during copper stress conditions, the activity of GSH-PX and CAT increased, resulting in reduced oxidative damage while maintaining stable intracellular pH. Higher unsaturated and cyclopropane fatty acid levels resulted in increased membrane fluidity and compactness and decreased ATP levels to support the energy requirements for stress resistance. Initially, H+-ATPase activity increased to provide energy for proton output and decreased later at higher copper ion stress. From transcriptome analysis, 140 genes were differentially expressed under low copper stress (1 g/L), while 250 genes exhibited altered transcriptional levels at higher copper stress (3 g/L). These differentially expressed genes were involved primarily in metabolic pathways such as energy metabolism, two-component systems, amino acid metabolism, and signal transduction. The Sox family cluster gene cluster involved in the conversion of thiosulfate to sulfate was upregulated in the sulfur metabolism pathway. In the oxidative phosphorylation pathway, genes participating in the synthesis of NADH oxidoreductase and cytochrome c oxidase, nuoL, cyoABD (cyoA, cyoB and cyoD) and cydAB (cydA and cydB), were downregulated. The TCS element ompR, closely associated with the osmotic pressure, exhibited active response, while Cu2+ efflux system gene cusRS was upregulated. In the amino acid metabolism, the glnA involved in nitrogen fixation was upregulated and promoted the synthesis of glutamine synthetase for reducing excessive oxidative stress. This study provides new insights into the mechanism underlying A. caldus response to heavy-metal ion stress under harsh bioleaching conditions.
Collapse
Affiliation(s)
- Shoushuai Feng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Shaoxiang Hou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yaquan Cui
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| | - Hailin Yang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China. .,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
12
|
Tong Y, Zhai Q, Lu W, Tian F, Zhao J, Zhang H, Chen W. New insights in integrated response mechanism of Lactobacillus plantarum under excessive manganese stress. Food Res Int 2017; 102:323-332. [DOI: 10.1016/j.foodres.2017.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|