1
|
Kozlowska J, Ciesielska A. Preparation and preliminary studies of porous fish collagen and chitosan materials enriched with microcapsules containing an active ingredient. Sci Rep 2025; 15:11511. [PMID: 40181081 PMCID: PMC11968787 DOI: 10.1038/s41598-025-95809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
This study explores the development and characterization of advanced composite materials combining fish collagen and chitosan, enhanced with chitosan-based microcapsules encapsulating an active ingredient-Calendula officinalis flower extract-hrough ionic gelation using various surfactants (Span 80, Tween 80 and Span80/Tween 80). Collagen was successfully extracted from northern pike scales and integrated with chitosan to create porous, three-dimensional matrices by the lyophilization process. Various amounts of microcapsules were incorporated into the matrices, and the structure of the obtained materials, their mechanical properties, swelling capacity, and susceptibility to degradation were assessed. Matrices with microcapsules exhibited high porosity, substantial swelling capacity, and improved mechanical properties compared to matrices without them. Microcapsules enabled the controlled release of active ingredients, demonstrating potential applications cosmetic industry. This research aligns with current trends in the cosmetics industry, such as the use of sustainable and eco-friendly materials derived from renewable resources like fish waste, the emphasis on natural and bioactive ingredients such as plant extracts, and the development of advanced delivery systems for controlled release of active compounds. The study addresses consumer demand for biodegradable and non-toxic materials, reducing environmental impact while enhancing product efficacy and safety.
Collapse
Affiliation(s)
- Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Toruń, 87-100, Poland.
| | - Agnieszka Ciesielska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Toruń, 87-100, Poland
- Institute of Environmental Protection - National Research Institute, Slowicza 32, Warsaw, 02-170, Poland
| |
Collapse
|
2
|
Todd EA, Mirsky NA, Silva BLG, Shinde AR, Arakelians ARL, Nayak VV, Marcantonio RAC, Gupta N, Witek L, Coelho PG. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J Funct Biomater 2024; 15:280. [PMID: 39452579 PMCID: PMC11509029 DOI: 10.3390/jfb15100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
Collapse
Affiliation(s)
- Emily Ann Todd
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Bruno Luís Graciliano Silva
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 01049-010, Brazil
| | - Ankita Raja Shinde
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aris R. L. Arakelians
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Nikhil Gupta
- Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Richterová V, Pekař M. Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels. Gels 2024; 10:611. [PMID: 39451265 PMCID: PMC11508024 DOI: 10.3390/gels10100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials.
Collapse
Affiliation(s)
- Veronika Richterová
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic;
| | | |
Collapse
|
4
|
Saghati S, Avci ÇB, Hassani A, Nazifkerdar S, Amini H, Saghebasl S, Mahdipour M, Banimohamad-Shotorbani B, Namjoo AR, Abrbekoh FN, Rahbarghazi R, Nasrabadi HT, Khoshfetrat AB. Phenolated alginate hydrogel induced osteogenic properties of mesenchymal stem cells via Wnt signaling pathway. Int J Biol Macromol 2023; 253:127209. [PMID: 37804896 DOI: 10.1016/j.ijbiomac.2023.127209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Osteogenic properties of phenolated alginate (1.2 %) hydrogel containing collagen (0.5 %)/nano-hydroxyapatite (1 %) were studied on human mesenchymal stem cells in vitro. The phenolation rate and physical properties of the hydrogel were assessed using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), swelling ratio, gelation time, mechanical assay, and degradation rate. The viability of encapsulated cells was monitored on days 7, 14, and 21 using an MTT assay. Osteoblast differentiation was studied using western blotting, and real-time PCR. Using PCR array analysis, the role of the Wnt signaling pathway was also investigated. Data showed that the combination of alginate/collagen/nanohydroxyapatite yielded proper mechanical features. The addition of nanohydroxyapatite, and collagen reduced degradation, swelling rate coincided with increased stiffness. Elasticity and pore size were also diminished. NMR and FTIR revealed suitable incorporation of collagen and nanohydroxyapatite in the structure of alginate. Real-time PCR analysis and western blotting indicated the expression of osteoblast-related genes such as Runx2 and osteocalcin. PCR array revealed the induction of numerous genes related to Wnt signaling pathways during the maturation of human stem cells toward osteoblast-like cells. In vivo data indicated that transplantation of phenolated alginate/collagen/nanohydroxyapatite hydrogel led to enhanced de novo bone formation in rats with critical-sized calvarial defects. Phenolated alginate hydrogel can promote the osteogenic capacity of human amniotic membrane mesenchymal stem cells in the presence of nanohydroxyapatite and collagen via engaging the Wnt signaling pathway.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Sajed Nazifkerdar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey; Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran.
| |
Collapse
|
5
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
6
|
Yu X, Wang L, He W. Cytophilic Agarose-Epoxide-Amine Cryogels Engineered with Granulated Microstructures. ACS APPLIED BIO MATERIALS 2023; 6:694-702. [PMID: 36695539 DOI: 10.1021/acsabm.2c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inherent cytophobicity of agarose limits its direct use for the growth of anchorage-dependent cells. Here, we report a simple strategy allowing the development of agarose-based hydrogels entailed with both cytophilicity and microstructured morphology. Through the reaction of water-soluble 1,4-butanediol diglycidyl ether (BDDE) with trifunctional polyetheramine Jeffamine T403 in agarose solution followed by cryogelation of the mixtures, a series of macroporous agarose-epoxide-amine cryogels were prepared readily. Results from fluorescent labeling and energy-dispersive X-ray elemental mapping showed the formation of granulated microstructures in the cryogels. Such features closely correlated to the phase separation of BDDE-T403 polymers within the agarose matrix. Cytophilicity of the microstructured cryogels due to the integrated amine moieties was demonstrated through the adhesion of fibroblasts. Functional enrichment of the cryogels was further highlighted by leveraging the granulates as micro-reservoirs for polyphenol proanthocyanidin to enable antioxidation and protection of fibroblasts from H2O2-induced cytotoxic effect in vitro.
Collapse
Affiliation(s)
- Xueying Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| | - Liwei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| |
Collapse
|
7
|
Syed MA, Hanif S, Ain NU, Syed HK, Zahoor AF, Khan IU, Abualsunun WA, Jali AM, Qahl SH, Sultan MH, Madkhali OA, Ahmed RA, Abbas N, Hussain A, Qayyum MA, Irfan M. Assessment of Binary Agarose-Carbopol Buccal Gels for Mucoadhesive Drug Delivery: Ex Vivo and In Vivo Characterization. Molecules 2022; 27:7004. [PMID: 36296596 PMCID: PMC9608223 DOI: 10.3390/molecules27207004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Agarose (AG) is a naturally occurring biocompatible marine seaweed extract that is converted to hydrocolloid gel in hot water with notable gel strength. Currently, its mucoadhesion properties have not been fully explored. Therefore, the main aim of this study was to evaluate the mucoadhesive potential of AG binary dispersions in combination with Carbopol 934P (CP) as mucoadhesive gel preparations. The gels fabricated via homogenization were evaluated for ex vivo mucoadhesion, swelling index (SI), dissolution and stability studies. The mucoadhesive properties of AG were concentration dependent and it was improved by the addition of CP. Maximum mucoadhesive strength (MS) (27.03 g), mucoadhesive flow time (FT) (192.2 min), mucoadhesive time in volunteers (MT) (203.2 min) and SI (23.6% at 4 h) were observed with formulation F9. The mucoadhesive time investigated in volunteers (MT) was influenced by AG concentration and was greater than corresponding FT values. Formulations containing 0.3%, w/v AG (F3 and F9) were able to sustain the release (~99%) for both drugs till 3 h. The optimized formulation (F9) did not evoke any inflammation, irritation or pain in the buccal cavity of healthy volunteers and was also stable up to 6 months. Therefore, AG could be considered a natural and potential polymer with profound mucoadhesive properties to deliver drugs through the mucosal route.
Collapse
Affiliation(s)
- Muhammad Ali Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Noor ul Ain
- Department of Medicine, Fatima Jinnah Medical University Lahore, Lahore 54000, Pakistan
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 54590, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Nasir Abbas
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Amjad Hussain
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore 5600, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| |
Collapse
|
8
|
Dravid A, Chapman A, Raos B, O'Carroll S, Connor B, Svirskis D. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Biomed Mater 2022; 17. [PMID: 35654031 DOI: 10.1088/1748-605x/ac759f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional bioprinting continues to advance as an attractive biofabrication technique to employ cell-laden hydrogel scaffolds in the creation of precise, user-defined constructs that can recapitulate the native tissue environment. Development and characterisation of new bioinks to expand the existing library helps to open avenues that can support a diversity of tissue engineering purposes and fulfil requirements in terms of both printability and supporting cell attachment. In this paper, we report the development and characterisation of agarose-gelatin hydrogel blends as a bioink for extrusion-based bioprinting. Four different agarose-gelatin hydrogel blend formulations with varying gelatin concentration were systematically characterised to evaluate suitability as a potential bioink for extrusion-based bioprinting. Additionally, autoclave and filter sterilisation methods were compared to evaluate their effect on bioink properties. Finally, the ability of the agarose-gelatin bioink to support cell viability and culture after printing was evaluated using SH-SY5Y cells encapsulated in bioprinted droplets of the agarose-gelatin. All bioink formulations demonstrate rheological, mechanical and swelling properties suitable for bioprinting and cell encapsulation. Autoclave sterilisation significantly affected the rheological properties of the agarose-gelatin bioinks compared to filter sterilisation. SH-SY5Y cells printed and differentiated into neuronal-like cells using the developed agarose-gelatin bioinks demonstrated high viability (>90%) after 23 days in culture. This study demonstrates the properties of agarose-gelatin as a printable and biocompatible material applicable for use as a bioink.
Collapse
Affiliation(s)
- Anusha Dravid
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Amy Chapman
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Brad Raos
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Simon O'Carroll
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Bronwen Connor
- The University of Auckland, Grafton, Auckland, 1142, NEW ZEALAND
| | - Darren Svirskis
- The University of Auckland, Grafton Campus, Auckland, 1142, NEW ZEALAND
| |
Collapse
|
9
|
Low Concentrated Fractionalized Nanofibers as Suitable Fillers for Optimization of Structural–Functional Parameters of Dead Space Gel Implants after Rectal Extirpation. Gels 2022; 8:gels8030158. [PMID: 35323271 PMCID: PMC8949947 DOI: 10.3390/gels8030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Dead space after rectal resection in colorectal surgery is an area with a high risk of complications. In this study, our goal was to develop a novel 3D implant based on composite hydrogels enriched with fractionalized nanofibers. We employed, as a novel approach in abdominal surgery, the application of agarose gels functionalized with fractionalized nanofibers on pieces dozens of microns large with a well-preserved nano-substructure. This retained excellent cell accommodation and proliferation, while nanofiber structures in separated islets allowed cells a free migration throughout the gel. We found these low-concentrated fractionalized nanofibers to be a good tool for structural and biomechanical optimization of the 3D hydrogel implants. In addition, this nano-structuralized system can serve as a convenient drug delivery system for a controlled release of encapsulated bioactive substances from the nanofiber core. Thus, we present novel 3D nanofiber-based gels for controlled release, with a possibility to modify both their biomechanical properties and drug release intended for 3D lesions healing after a rectal extirpation, hysterectomy, or pelvic exenteration.
Collapse
|
10
|
Superior Technique for the Production of Agarose Dressing Containing Sericin and Its Wound Healing Property. Polymers (Basel) 2021; 13:polym13193370. [PMID: 34641182 PMCID: PMC8512865 DOI: 10.3390/polym13193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Finding a simple and eco-friendly production technique that matches to the natural agent and results in a truly valuable natural scaffold production is still limited amongst the intensively competitive natural scaffold development. Therefore, the purpose of this study was to develop natural scaffolds that were environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. These scaffolds were prepared from agarose and sericin using the freeze-drying method (D) or freeze-thawing together with the freeze-drying method (TD). Moreover, plasticizers were added into the scaffold to improve their properties. Their physical, mechanical, and biological properties were investigated. The results showed that scaffolds that were prepared using the TD method had stronger bonding between sericin and other compounds, leading to a low swelling ratio and low protein release of the scaffolds. This property may be applied in the development of further material as a controlled drug release scaffold. Adding plasticizers, especially glycerin, into the scaffolds significantly increased elongation properties, leading to an increase in elasticity of the scaffold. Moreover, all scaffolds could activate cell migration, which had an advantage on wound healing acceleration. Accordingly, this study was successful in developing natural scaffolds using natural agents and simple and green crosslinking methods.
Collapse
|
11
|
Been S, Choi J, Cho H, Jeon G, Song JE, Bucciarelli A, Khang G. Preparation and characterization of a soluble eggshell membrane/agarose composite scaffold with possible applications in cartilage regeneration. J Tissue Eng Regen Med 2021; 15:375-387. [PMID: 33533202 DOI: 10.1002/term.3178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
Articular hyaline cartilage is an extremely hydrated, not vascularized tissue with a low-cell density. The damage of this tissue can occur after injuries or gradual stress and tears (osteoarthritis), minor damages can be self-healed in several weeks, but major injuries may eventually require surgery. In fact, in this case, because of nature of the cartilage (the absence of cells and vascularization) it is difficult to expect its natural regeneration in a reasonable amount of time. In recent years, cell therapy, in which cells are directly transplanted, has attracted attention. In this study, a scaffold for implanting chondrocytes was prepared. The scaffold was made as a sponge using the eggshell membrane and agarose. The eggshell membrane is structurally similar to the extracellular matrix and nontoxic due to its many collagen components and has good biocompatibility and biodegradability. However, scaffolds made of collagen only has poor mechanical properties. For this reason, the disulfide bond of collagen extracted from the insoluble eggshell membrane was cut, converted into water-soluble, and then mixed with agarose to prepare a scaffold. Agarose is capable of controlling mechanical properties, has excellent biocompatibility, and is suitable for forming a hydrogel having a three-dimensional porosity. The scaffold was examined for Fourier-transform infrared, mechanical properties, biodegradability, and biocompatibility. In in vitro experiment, cytotoxicity, cell proliferation, and messenger RNA expression were investigated. The study demonstrated that the agarose/eggshell membrane scaffold can be used for chondrocyte transplantation.
Collapse
Affiliation(s)
- Suyoung Been
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeongmin Choi
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Hunhwi Cho
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Gayeong Jeon
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeong E Song
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Alessio Bucciarelli
- Microsystems Technology Group, Materials and Microsystems Center (CMM), Fondazione Bruno Kessler, Trento, Italy
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
12
|
Shang L, Ma B, Wang F, Li J, Shen S, Li X, Liu H, Ge S. Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair. Cell Prolif 2020; 53:e12917. [PMID: 33001510 PMCID: PMC7653257 DOI: 10.1111/cpr.12917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Articular cartilage plays a vital role in bearing and buffering. Injured cartilage and subchondral bone repair is a crucial challenge in cartilage tissue engineering due to the peculiar structure of osteochondral unit and the requirement of osteogenic/chondrogenic bi-directional differentiation. Based on the bionics principle, a nanotextured silk fibroin (SF)-chondroitin sulphate (CS)/hydroxyapatite (HAp) nanowire tough bilayer structure was prepared for osteochondral repair. METHODS The SF-CS/HAp membrane was constructed by alcohol-induced β-sheet formation serving as the physical crosslink. Its osteochondral repairing capacity was evaluated by culturing bone marrow mesenchymal stem cells (BMSCs) in vitro and constructing a rat osteochondral defect model in vivo. RESULTS The bilayer SF-CS/HAp membrane with satisfactory mechanical properties similar to natural cartilage imitated the natural osteochondral unit structural layers and exerted the function of bearing and buffering timely after in vivo implantation. SF-CS layer upregulated the expression of chondrogenesis-related genes of BMSCs by surface nanotopography and sustained release CS. Meanwhile, nanotextured HAp layer assembled with nanowire endowed the membrane with an osteogenic differentiation tendency for BMSCs. In vivo results proved that the biomimetic bilayer structure dramatically promoted new cartilage formation and subchondral bone remodelling for osteochondral defect model after implantation. CONCLUSIONS The SF-CS/HAp biomimetic bilayer membrane provides a promising strategy for precise osteochondral repair.
Collapse
Affiliation(s)
- Lingling Shang
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanChina
| | - Baojin Ma
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Fulei Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Jianhua Li
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanChina
| | - Song Shen
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanChina
| | - Xiaoyuan Li
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanChina
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
| | - Shaohua Ge
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanChina
| |
Collapse
|
13
|
Baptista M, Joukhdar H, Alcala-Orozco CR, Lau K, Jiang S, Cui X, He S, Tang F, Heu C, Woodfield TBF, Lim KS, Rnjak-Kovacina J. Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for in situ tissue engineering. Biomater Sci 2020; 8:7093-7105. [DOI: 10.1039/d0bm01010c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk photo-lyogels fabricated by di-tyrosine photo-crosslinking and ice-templating silk fibroin on 3D printed templates toward in situ tissue engineering applications.
Collapse
|
14
|
Sivashankari PR, Prabaharan M. Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering. Int J Biol Macromol 2019; 146:222-231. [PMID: 31891702 DOI: 10.1016/j.ijbiomac.2019.12.219] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 01/19/2023]
Abstract
Three-dimensional (3D) porous scaffolds based on agarose/chitosan/graphene oxide (ACGO) composite were prepared by the freeze-drying technique. The prepared scaffolds were characterized by FTIR, XRD and SEM analysis. The effect of graphene oxide (GO) on the physicochemical and biological properties of the composite scaffolds was evaluated in terms of porosity, swelling, water retention, compressive strength, enzymatic degradation, cytotoxicity and cell attachment behaviors. The ACGO composite scaffolds exhibited the well-defined interconnected pores with rough surface morphology. The porosity, swelling, water retention ability and compressive strength of the composite scaffolds increased with the increase in GO content, while the degradation rate of the scaffolds decreased with the addition of GO. The composite scaffolds showed adequate hemocompatibility and Vero cell proliferation ability. Cell attachment studies demonstrated that GO present in the composite scaffolds provided a favorable environment for cell attachment and proliferation. These results suggest that ACGO composite scaffolds could be reliable and appropriate for tissue engineering applications.
Collapse
Affiliation(s)
- P R Sivashankari
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
15
|
Mellor LF, Nordberg RC, Huebner P, Mohiti-Asli M, Taylor MA, Efird W, Oxford JT, Spang JT, Shirwaiker RA, Loboa EG. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. J Biomed Mater Res B Appl Biomater 2019; 108:2017-2030. [PMID: 31880408 PMCID: PMC7217039 DOI: 10.1002/jbm.b.34542] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022]
Abstract
Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site-specific osteogenic and chondrogenic differentiation of human adipose-derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D-bioplotting of biodegradable polycraprolactone (PCL) with either β-tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site-specific hASC osteogenesis and chondrogenesis, respectively. PCL-dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D-bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC-seeded 3D-bioplotted PCL-TCP, electrospun PCL, and 3D-bioplotted PCL-dECM phases were evaluated and demonstrated site-specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologous cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold.
Collapse
Affiliation(s)
- Liliana F Mellor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Rachel C Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| | - Pedro Huebner
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mahsa Mohiti-Asli
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Michael A Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - William Efird
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Julia T Oxford
- Biomolecular Research Center, Boise State University, Boise, Idaho
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Rohan A Shirwaiker
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Elizabeth G Loboa
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|