1
|
Zhang QH, Wang Z, Wang YQ, Liu ML, Su HJ. Enhancement of menaquinone- 7 production through immobilization with hydrogel-based porous membranes. Appl Microbiol Biotechnol 2025; 109:121. [PMID: 40360785 PMCID: PMC12075279 DOI: 10.1007/s00253-025-13493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The industrial production of menaquinone-7 (MK-7) by Bacillus subtilis has been historically constrained by significant challenges in bioprocess efficiency. To address these limitations, we explored an innovative immobilization strategy utilizing a porous thin-film hydrogel system. Specifically, we developed a novel porous thin-film PVA + B@Ca hydrogel immobilization method that fundamentally transforms cell encapsulation and fermentation dynamics. The comparison between PVA + B@Ca hydrogel immobilized cells and free cells in fermentation demonstrated a significant increase in MK-7 yield from 32.76 ± 1.92 to 48.33 ± 2.92 mg/L, as well as a reduction of the fermentation duration from 48 to 24 h. Additionally, the immobilized cells demonstrated good stability during continuous fermentation, resulting in a space-time yield of MK-7 that increased to 2.0 mg/L·h, which was five times higher than that achieved with free-cell fermentation. Mechanistic insights revealed through microscopic analysis highlight the transformative nature of the hydrogel immobilization: The PVA + B@Ca hydrogel's porous structure creates a protective microenvironment that mitigates cellular stress and maintains optimal metabolic conditions. These findings represent a paradigm shift in understanding cellular immobilization, demonstrating how strategic encapsulation can fundamentally enhance MK-7 fermentation biotechnology. KEY POINTS: • A novel hydrogel immobilization method was developed for MK- 7 production. • The use of immobilized cells gave a fivefold improvement in the space-time yield.
Collapse
Affiliation(s)
- Qiu-Hua Zhang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Brother Research Center, Jiangxi Brother Pharmaceutical Co.,LTD, Jiujiang, 332700, People's Republic of China
| | - Zheng Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yao-Qiang Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Man-Lu Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hai-Jia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Xu LY, Qiu YB, Zhang XM, Su C, Shi JS, Xu ZH, Li H. The efficient green bio-manufacturing of Vitamin K 2: design, production and applications. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39660648 DOI: 10.1080/10408398.2024.2439038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Vitamin K2, also known as methylnaphthoquinone, is a crucial fat-soluble nutrient necessary for the human body. The biological production of Vitamin K2 has received widespread attention due to its environmental friendliness and maneuverability in recent years. This review provides insights into the modular metabolic pathways of Vitamin K2, lays the foundation for microbial metabolic flow balancing, cofactor engineering and dynamic regulation, and realizes the production of Vitamin K2 by synthesizing artificial cells from scratch. With the intensive development of modern fermentation technology, methods for the preparation of Vitamin K2 using the fermentation strategies of co-culturing and biofilm reactors have emerged. In prokaryotes, the introduction of heptenyl pyrophosphate synthase (HepPPS) and mevalonate acid (MVA) pathway solved the problem of insufficient precursors for Vitamin K2 production but still did not meet the market demand. Therefore, enhancing expression through multi-combinatorial metabolic regulation and innovative membrane reactors is an entry point for future research. Due to the light-induced decomposition and water-insoluble nature of Vitamin K2, the secretion regulation and purification processing also need to be considered in the actual production. Also, it summarizes the research progress of Vitamin K2 in the food and pharmaceutical fields. Additionally, the future development trend and application prospect of Vitamin K2 are also discussed to provide guidance for Vitamin K2 biosynthesis and application.
Collapse
Affiliation(s)
- Li-Yang Xu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Yi-Bin Qiu
- School of Food and Light Industry, Nanjing University of Technology, Nanjing, PR China
| | - Xiao-Mei Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Chang Su
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Jing-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- School of Light Industry Science and Engineering, Sichuan University, Sichuan, PR China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| |
Collapse
|
3
|
Zhu P, Zhang C, Chen J, Zeng X. Multilevel systemic engineering of Bacillus licheniformis for efficient production of acetoin from lignocellulosic hydrolysates. Int J Biol Macromol 2024; 279:135142. [PMID: 39208901 DOI: 10.1016/j.ijbiomac.2024.135142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Bio-refining lignocellulosic resource offers a renewable and sustainable approach for producing biofuels and biochemicals. However, the conversion efficiency of lignocellulosic resource is still challenging due to the intrinsic inefficiency in co-utilization of xylose and glucose. In this study, the industrial bacterium Bacillus licheniformis was engineered for biorefining lignocellulosic resource to produce acetoin. First, adaptive evolution was conducted to improve acetoin tolerance, leading to a 19.6 % increase in acetoin production. Then, ARTP mutagenesis and 60Co-γ irradiation was carried out to enhance the production of acetoin, obtaining 73.0 g/L acetoin from glucose. Further, xylose uptake and xylose utilization pathway were rewired to facilitate the co-utilization of xylose and glucose, enabling the production of 60.6 g/L acetoin from glucose and xylose mixtures. Finally, this efficient cell factory was utilized for acetoin production from lignocellulosic hydrolysates with the highest titer of 68.3 g/L in fed-batch fermentation. This strategy described here holds great applied potential in the biorefinery of lignocellulose for the efficient synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Pan Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jiaying Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
4
|
Zhang QH, Wang Z, Wang YQ, Zhao YL, Su HJ. Colorimetric screening model for identification of menaquinone-7 (MK-7) producing strains. 3 Biotech 2024; 14:244. [PMID: 39328501 PMCID: PMC11422327 DOI: 10.1007/s13205-024-04097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, a novel colorimetric screening method for identifying menaquinone-7 (MK-7) producing strains was established using potassium permanganate. To our knowledge, this method represents the first direct screening methodology for the identification of MK-7 producing strains. Utilizing this screening method, a new MK-7 producing strain, Bacillus subtilis GSA-184, was identified from the soil of the Tibetan Plateau. Under the optimized fermentation medium (50 g/L glycerol, 30 g/L yeast extract powder, 100 g/L soybean peptone, 1 g/L KH2PO4, and 1 g/L MnSO4), the production of MK-7 was increased to 25.7 mg/L. Additionally, the maximum production of MK-7 reached 36.46 mg/L after 48 h in a 5-L fermenter. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04097-1.
Collapse
Affiliation(s)
- Qiu-Hua Zhang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Zheng Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Yao-Qiang Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Yi-Lin Zhao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Hai-Jia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| |
Collapse
|
5
|
Hu P, Peng C, Zhang B, Hu X, Milon RB, Ren L. Enhancing menaquinone-7 biosynthesis through strengthening precursor supply and product secretion. Bioprocess Biosyst Eng 2024; 47:211-222. [PMID: 38153563 DOI: 10.1007/s00449-023-02955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Menaquinone-7 (MK-7) is an important class of vitamin K2 that is essential in human health and can prevent osteoporosis and cardiovascular disease. However, due to the complex synthesis pathway, the synthesis efficiency is low. The main objective of this study was to explore the effect of enhanced supply of precursors in Bacillus natto. Three precursors of pyruvate, shikimic acid, and sodium glutamate were chosen to investigate the effect of enhanced supply of precursors on MK-7 synthesis. Then, the optimal concentrations, different combinations, and different adding times were systematically studied, respectively. Results showed that the combination of shikimic acid and sodium glutamate could boost MK-7 production by 2 times, reaching 50 mg/L of MK-7 titer and 0.52 mg/(L·h) of MK-7 productivity. Furthermore, adding shikimic acid and sodium glutamate initially and feeding pyruvate at 48 h and 72 h increased MK-7 production to 58 mg/L. At the same time, the expression of the three related genes was also significantly upregulated. Subsequently, a new fermentation strategy combining the precursors enhancement and product secretion was proposed to enhance MK-7 yield and MK-7 productivity to 63 mg/L and 0.45 mg/(L·h). This study proposed a new fermentation regulation strategy for the enhancement of vitamin K2 biosynthesis.
Collapse
Affiliation(s)
- Pengchen Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Cheng Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Bei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- Shanghai JanStar Technology Development Co., Ltd., No. 1288, Huateng Road, Shanghai, People's Republic of China
| | - Ripon Baroi Milon
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
6
|
Luo Z, Yan Y, Du S, Zhu Y, Pan F, Wang R, Xu Z, Xu X, Li S, Xu H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications. Crit Rev Biotechnol 2023; 43:1073-1091. [PMID: 35997331 DOI: 10.1080/07388551.2022.2095499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
7
|
Liu Y, Wang J, Huang JB, Li XF, Chen Y, Liu K, Zhao M, Huang XL, Gao XL, Luo YN, Tao W, Wu J, Xue ZL. Advances in regulating vitamin K 2 production through metabolic engineering strategies. World J Microbiol Biotechnol 2023; 40:8. [PMID: 37938463 DOI: 10.1007/s11274-023-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Vitamin K2 (menaquinone, VK2, MK) is an essential lipid-soluble vitamin that plays critical roles in inhibiting cell ferroptosis, improving blood clotting, and preventing osteoporosis. The increased global demand for VK2 has inspired interest in novel production strategies. In this review, various novel metabolic regulation strategies, including static and dynamic metabolic regulation, are summarized and discussed. Furthermore, the advantages and disadvantages of both strategies are analyzed in-depth to highlight the bottlenecks facing microbial VK2 production on an industrial scale. Finally, advanced metabolic engineering biotechnology for future microbial VK2 production will also be discussed. In summary, this review provides in-depth information and offers an outlook on metabolic engineering strategies for VK2 production.
Collapse
Affiliation(s)
- Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Jian Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jun-Bao Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xiang-Fei Li
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Yu Chen
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Kun Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Ming Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Xi-Lin Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xu-Li Gao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Ya-Ni Luo
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Wei Tao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jing Wu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zheng-Lian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| |
Collapse
|
8
|
Yang Q, Zheng Z, Wang P, Wang L, Wang H, Zhang M, Zhao G. Insights into Regulating Mechanism of Mutagenesis Strains of Elizabethkingia meningoseptica sp. F2 by Omics Analysis. Curr Microbiol 2023; 80:183. [PMID: 37055590 DOI: 10.1007/s00284-023-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Vitamin K2 plays an important role in electron transport, blood coagulation, and calcium homeostasis, and researchers have been trying to use microbes to produce it. Although our previous studies have shown that gradient radiation, breeding, and culture acclimation can improve vitamin K2 production in Elizabethkingia meningoseptica, the mechanism is still unclear. This study is the first which performs genome sequencing of E. meningoseptica sp. F2 as a basis for subsequent experiments and further comparative analyses with other strains. Comparative metabolic pathway analysis of E. meningoseptica sp. F2, E. coli, Bacillus subtilis, and other vitamin K2 product strains revealed that the mevalonate pathway of E. meningoseptica sp. F2 is different in bacteria at the system level. The expressions of menA, menD, menH, and menI in the menaquinone pathway and idi, hmgR, and ggpps in the mevalonate pathway were higher than those in the original strain. A total of 67 differentially expressed proteins involved in the oxidative phosphorylation metabolic pathway and citric acid cycle (TCA cycle) were identified. Our results reveal that combined gradient radiation breeding and culture acclimation can promote vitamin K2 accumulation probably by regulating the vitamin K2 pathway, oxidative phosphorylation metabolism pathway, and the citrate cycle (TCA cycle).
Collapse
Affiliation(s)
- Qiang Yang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Peng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Mengxue Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
9
|
Chen X, Shang C, Zhang H, Sun C, Zhang G, Liu L, Li C, Li A, Du P. Effects of Alkali Stress on the Growth and Menaquinone-7 Metabolism of Bacillus subtilis natto. Front Microbiol 2022; 13:899802. [PMID: 35572665 PMCID: PMC9096614 DOI: 10.3389/fmicb.2022.899802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Menaquinone-7 (MK-7) is an important vitamin K2, synthesized from the menaquinone parent ring and seven isoprene side chains. Presently, the synthesis of MK-7 stimulated by environmental stress primarily focuses on oxygen stress, while the effect of alkali stress is rarely studied. Therefore, this study researched the effects of alkali stress on the fermentation performance and gene expression of Bacillus subtilis natto. The organism’s growth characteristics, biomass, sporogenesis, MK-7 biosynthesis, and gene expression were analyzed. After a pH 8.5 stress adaptation treatment for 0.5 h and subsequent fermentation at pH 8.5, which promoted the growth of the strain and inhibited the spore formation rate. In addition, biomass was significantly increased (P < 0.05). The conversion rate of glycerol to MK-7 was 1.68 times higher than that of the control group, and the yield of MK-7 increased to 2.10 times. Transcriptomic analysis showed that the MK-7 high-yielding strain had enhanced carbon source utilization, increased glycerol and pyruvate metabolism, enhanced the Embden-Meyerhof pathway (EMP), tricarboxylic acid (TCA) circulation flux, and terpenoid biosynthesis pathway, and promoted the accumulation of acetyl-CoA, the side-chain precursor of isoprene. At the same time, the up-regulation of transketolase increased the metabolic flux of the pentose phosphate (HMP) pathway, which was conducive to the accumulation of D-erythrose 4-phosphate, the precursor of the menadione parent ring. This study’s results contribute to a better understanding of the effects of environmental stress on MK-7 fermentation by Bacillus subtilis natto and the molecular regulatory mechanism of MK-7 biosynthesis.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Shang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Huimin Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Cuicui Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Aili Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Production of Vitamin K by Wild-Type and Engineered Microorganisms. Microorganisms 2022; 10:microorganisms10030554. [PMID: 35336129 PMCID: PMC8954062 DOI: 10.3390/microorganisms10030554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin K is a fat-soluble vitamin that mainly exists as phylloquinone or menaquinone in nature. Vitamin K plays an important role in blood clotting and bone health in humans. For use as a nutraceutical, vitamin K is produced by natural extraction, chemical synthesis, and microbial fermentation. Natural extraction and chemical synthesis methods for vitamin K production have limitations, such as low yield of products and environmental concerns. Microbial fermentation is a more sustainable process for industrial production of natural vitamin K than two other methods. Recent advanced genetic technology facilitates industrial production of vitamin K by increasing the yield and productivity of microbial host strains. This review covers (i) general information about vitamin K and microbial host, (ii) current titers of vitamin K produced by wild-type microorganisms, and (iii) vitamin K production by engineered microorganisms, including the details of strain engineering strategies. Finally, current limitations and future directions for microbial production of vitamin K are also discussed.
Collapse
|
11
|
Lu Y, Cheng X, Deng H, Chen S, Ji Z. Improvement of 1-deoxynojirimycin production of Bacillus amyloliquefaciens by gene overexpression and medium optimization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wu J, Li W, Zhao SG, Qian SH, Wang Z, Zhou MJ, Hu WS, Wang J, Hu LX, Liu Y, Xue ZL. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis. Microb Cell Fact 2021; 20:113. [PMID: 34098969 PMCID: PMC8183045 DOI: 10.1186/s12934-021-01603-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Background Menaquinone (MK-7) is a highly valuable vitamin K2 produced by Bacillus subtilis. Common static metabolic engineering approaches for promoting the production of MK-7 have been studied previously. However, these approaches caused an accumulation of toxic substances and reduced product yield. Hence, dynamic regulation by the quorum sensing (QS) system is a promising method for achieving a balance between product synthesis and cell growth. Results In this study, the QS transcriptional regulator SinR, which plays a significant role in biofilm formation and MK production simultaneously, was selected, and its site-directed mutants were constructed. Among these mutants, sinR knock out strain (KO-SinR) increased the biofilm biomass by 2.8-fold compared to the wild-type. SinRquad maximized the yield of MK-7 (102.56 ± 2.84 mg/L). To decipher the mechanism of how this mutant regulates MK-7 synthesis and to find additional potential regulators that enhance MK-7 synthesis, RNA-seq was used to analyze expression changes in the QS system, biofilm formation, and MK-7 synthesis pathway. The results showed that the expressions of tapA, tasA and epsE were up-regulated 9.79-, 0.95-, and 4.42-fold, respectively. Therefore, SinRquad formed more wrinkly and smoother biofilms than BS168. The upregulated expressions of glpF, glpk, and glpD in this biofilm morphology facilitated the flow of glycerol through the biofilm. In addition, NADH dehydrogenases especially sdhA, sdhB, sdhC and glpD, increased 1.01-, 3.93-, 1.87-, and 1.11-fold, respectively. The increased expression levels of NADH dehydrogenases indicated that more electrons were produced for the electron transport system. Electrical hyperpolarization stimulated the synthesis of the electron transport chain components, such as cytochrome c and MK, to ensure the efficiency of electron transfer. Wrinkly and smooth biofilms formed a network of interconnected channels with a low resistance to liquid flow, which was beneficial for the uptake of glycerol, and facilitated the metabolic flux of four modules of the MK-7 synthesis pathway. Conclusions In this study, we report for the first time that SinRquad has significant effects on MK-7 synthesis by forming wrinkly and smooth biofilms, upregulating the expression level of most NADH dehydrogenases, and providing higher membrane potential to stimulate the accumulation of the components in the electron transport system. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01603-5.
Collapse
Affiliation(s)
- Jing Wu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wei Li
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Shi-Guang Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Sen-He Qian
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Zhou Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Meng-Jie Zhou
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wen-Song Hu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jian Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Liu-Xiu Hu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Wuhu Zhanghengchun Medicine CO., LTD, Wuhu, 241000, China
| | - Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China. .,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| | - Zheng-Lian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China. .,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| |
Collapse
|
13
|
Gao Q, Chen H, Wang G, Yang W, Zhong X, Liu J, Huo X, Liu W, Huang J, Tao Y, Lin B. Highly Efficient Production of Menaquinone-7 from Glucose by Metabolically Engineered Escherichia coli. ACS Synth Biol 2021; 10:756-765. [PMID: 33755417 DOI: 10.1021/acssynbio.0c00568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Menaquinone-7 (MK-7) possesses wide health and medical value, and the market demand for MK-7 has increased. Metabolic engineering for MK-7 production in Escherichia coli still remains challenging due to the characteristics of the competing quinone synthesis, and cells mainly synthesized menaquinones under anaerobic conditions. To increase the production of MK-7 in engineered E. coli strains under aerobic conditions, we divided the whole MK-7 biosynthetic pathway into three modules (MVA pathway, DHNA pathway, and MK-7 pathway) and systematically optimized each of them. First, by screening and enhancing Idi expression, the amounts of MK-7/DMK-7 increased significantly. Then, in the MK-7 pathway, by combinatorial overexpression of endogenous MenA and exogenous UbiE, and fine-tuning the expression of HepPPS, MenA, and UbiE, 70 μM MK-7 was achieved. Third, the DHNA synthetic pathway was enhanced, and 157 μM MK-7 was achieved. By the combinational metabolic engineering strategies and membrane engineering, an efficient metabolic engineered E. coli strain for MK-7 synthesis was developed, and 200 μM (129 mg/L) MK-7 was obtained in shake flask experiment, representing a 306-fold increase compared to the starting strain. In the scale-up fermentation, 2074 μM (1350 mg/L) MK-7 was achieved after 52 h fermentation with a productivity of 26 mg/L/h. This is the highest titer of MK-7 ever reported. This study offers an alternative method for MK-7 production from biorenewable feedstock (glucose) by engineered E. coli. The high titer of our process should make it a promising cost-effective resource for MK-7.
Collapse
Affiliation(s)
- Quanxiu Gao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hao Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoyan Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Zhong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiezheng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - XiaoJing Huo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhao C, Wan Y, Tang G, Jin Q, Zhang H, Xu Z. Comparison of different fermentation processes for the vitamin K2 (Menaquinone-7) production by a novel Bacillus velezensis ND strain. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Zou D, Li L, Min Y, Ji A, Liu Y, Wei X, Wang J, Wen Z. Biosynthesis of a Novel Bioactive Metabolite of Spermidine from Bacillus amyloliquefaciens: Gene Mining, Sequence Analysis, and Combined Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:267-274. [PMID: 33356220 DOI: 10.1021/acs.jafc.0c07143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spermidine is a biologically active polyamine with extensive application potential in functional foods. However, previously reported spermidine titers by biosynthesis methods are relatively low, which hinders its industrial application. To improve the spermidine titer, key genes affecting the spermidine production were mined to modify Bacillus amyloliquefaciens. Genes of S-adenosylmethionine decarboxylase (speD) and spermidine synthase (speE) from different microorganisms were expressed and compared in B. amyloliquefaciens. Therein, the speD from Escherichia coli and speE from Saccharomyces cerevisiae were confirmed to be optimal for spermidine synthesis, respectively. Gene and amino acid sequence analysis further confirmed the function of speD and speE. Then, these two genes were co-expressed to generate a recombinant strain B. amyloliquefaciens HSAM2(PDspeD-SspeE) with a spermidine titer of 105.2 mg/L, improving by 11.0-fold compared with the control (HSAM2). Through optimization of the fermentation medium, the spermidine titer was increased to 227.4 mg/L, which was the highest titer among present reports. Moreover, the consumption of the substrate S-adenosylmethionine was consistent with the accumulation of spermidine, which contributed to understanding its synthesis pattern. In conclusion, two critical genes for spermidine synthesis were obtained, and an engineering B. amyloliquefaciens strain was constructed for enhanced spermidine production.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
16
|
Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis. Enzyme Microb Technol 2020; 141:109652. [DOI: 10.1016/j.enzmictec.2020.109652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 11/21/2022]
|
17
|
Transcriptomic analysis of gene expression of menaquinone-7 in Bacillus subtilis natto toward different oxygen supply. Food Res Int 2020; 137:109700. [PMID: 33233274 DOI: 10.1016/j.foodres.2020.109700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
Menaquinone-7 (MK-7) is an important kind of vitamin K2 which plays significant roles in the treatment of coagulation and osteoporosis, and prevention of cardiovascular disease. This work was purposed to study the differences of gene expression at different oxygen supply conditions in Bacillus natto. The differences of fermentation characteristics, gene expression related to MK-7 biosynthesis, spore and biofilm formation were analyzed. The yield of MK-7 increased by two fold under high oxygen supply condition of 200 rpm. Further transcriptome analysis indicated that most of the enzymes in MK-7 biosynthesis pathway were also up-regulated. Moreover, glycerol kinase, fructose-bisphosphate aldolase and phosphofructokinase in glycolysis pathway were all up-regulated indicating that high oxygen supply can increase the consumption of substrate glycerol. Meanwhile, menD, encoded the rate-limiting enzyme in the MK pathway, was obviously up-regulated by 3.49-fold while most of the enzymes related to spore formation were down regulated at 200 rpm. Besides, superoxide dismutase (SOD2), catalase (CAT), hydroperoxide reductase (AhpF) and DNA-binding protein MrgA in the antioxidant defense system were up-regulated, while superoxide dismutase (SOD1) and glutathione peroxidase (GSH-Px) were down-regulated. These results could contribute to a better understanding for the effect of oxygen on the MK-7 production in Bacillus natto, and further analyze the molecular regulation mechanism of MK-7 biosynthesis.
Collapse
|
18
|
Bøe CA, Holo H. Engineering Lactococcus lactis for Increased Vitamin K2 Production. Front Bioeng Biotechnol 2020; 8:191. [PMID: 32258010 PMCID: PMC7093718 DOI: 10.3389/fbioe.2020.00191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 01/07/2023] Open
Abstract
Cheese produced with Lactococcus lactis is the main source of vitamin K2 in the Western diet. Subclinical vitamin K2 deficiency is common, calling for foods with enhanced vitamin K2 content. In this study we describe analyses of vitamin K2 (menaquinone) production in the lactic acid bacterium L. lactis ssp. cremoris strain MG1363. By cloning and expression from strong promoters we have identified genes and bottlenecks in the biosynthetic pathways leading to the long-chained menaquinones, MK-8 and MK-9. Key genes of the biosynthetic menaquinone pathway were overexpressed, singly or combined, to examine how vitamin K2 production can be enhanced. We observed that the production of the long menaquinone polyprenyl side chain, rather than production of the napthoate ring (1,4-dihydroxy-2-naphtoic acid), limits total menaquinone synthesis. Overexpression of genes causing increased ring formation (menF and menA) led to overproduction of short chained MK-3, while overexpression of other key genes (mvk and llmg_0196) resulted in enhanced full-length MK-9 production. Of two putatively annotated prenyl diphosphate synthases we pinpoint llmg_0196 (preA) to be important for menaquinone production in L. lactis. The genes mvk, preA, menF, and menA were found to be important contributors to menaquinone levels as single overexpression of these genes double and more than triple the total menaquinone content in culture. Combined overexpression of mvk, preA, and menA increased menaquinone levels to a higher level than obtained individually. When the overproducing strains were applied for milk fermentations vitamin K2 content was effectively increased 3-fold compared to the wild type. The results provide a foundation for development of strains to ferment foods with increased functional value i.e., higher vitamin K2 content.
Collapse
Affiliation(s)
- Cathrine Arnason Bøe
- Laboratory of Microbial Gene Technology, Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Helge Holo
- Laboratory of Microbial Gene Technology, Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Tine SA, Oslo, Norway
| |
Collapse
|
19
|
Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv 2019; 39:107453. [PMID: 31629792 DOI: 10.1016/j.biotechadv.2019.107453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Vitamin K2, also called menaquinone, is an essential lipid-soluble vitamin that plays a critical role in blood clotting and prevention of osteoporosis. It has become a focus of research in recent years and has been widely used in the food and pharmaceutical industries. This review will briefly introduce the functions and applications of vitamin K2 first, after which the biosynthesis pathways and enzymes will be analyzed in-depth to highlight the bottlenecks facing the microbial vitamin K2 production on the industrial scale. Then, various strategies, including strain mutagenesis and genetic modification, different cultivation modes, fermentation and separation processes, will be summarized and discussed. The future prospects and perspectives of microbial menaquinone production will also be discussed finally.
Collapse
|
20
|
Ruan L, Li L, Zou D, Jiang C, Wen Z, Chen S, Deng Y, Wei X. Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:211. [PMID: 31516550 PMCID: PMC6732833 DOI: 10.1186/s13068-019-1554-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. Therefore, the SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium. RESULTS Four genes were found to significantly affect SAM production, including SAM2 from Saccharomyces cerevisiae, metA and metB from Escherichia coli, and native mccA. These four genes were combined to engineer the SAM pathway, resulting in a 1.42-fold increase in SAM titer using recombinant strain HSAM1. The engineered SAM pathway was subsequently coupled with the TCA cycle through deletion of succinyl-CoA synthetase gene sucC, and the resulted HSAM2 mutant produced a maximum SAM titer of 107.47 mg/L, representing a 0.59-fold increase over HSAM1. Expression of SAM2 in this strain via a recombinant plasmid resulted in strain HSAM3 that produced 648.99 mg/L SAM following semi-continuous flask batch fermentation, a much higher yield than previously reported for methionine-free medium. CONCLUSIONS This study reports an efficient strategy for improving SAM production that can also be applied for generation of SAM cofactors supporting group transfer reactions, which could benefit metabolic engineering, chemical biology and synthetic biology.
Collapse
Affiliation(s)
- Liying Ruan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhiyou Wen
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, 50011 USA
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, 214122 China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
21
|
Yang S, Wang Y, Cai Z, Zhang G, Song H. Metabolic engineering ofBacillus subtilisfor high‐titer production of menaquinone‐7. AIChE J 2019. [DOI: 10.1002/aic.16754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaomei Yang
- Department of Biological Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Yongping Wang
- Department of Biological Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Zhigang Cai
- Chifeng Pharmaceutical Company Limited, Chifeng Inner Mongolia China
| | - Guoyin Zhang
- Chifeng Pharmaceutical Company Limited, Chifeng Inner Mongolia China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| |
Collapse
|
22
|
Improvement of menaquinone-7 production by Bacillus subtilis natto in a novel residue-free medium by increasing the redox potential. Appl Microbiol Biotechnol 2019; 103:7519-7535. [PMID: 31378837 DOI: 10.1007/s00253-019-10044-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Bacillus subtilis natto is a GRAS bacterium. Nattokinase, with fibrinolytic and antithrombotic activities, is one of the major products of this organism. It is being gradually recognized that B. subtilis natto can also be used as a biosynthetic strain for vitamin K2, which has phenomenal benefits, such as effects in the prevention of cardiovascular diseases and osteoporosis along with antitumor effects. Knocking out of the aprN gene by homologous recombination could improve the redox potential and slightly increase the concentration of MK-7. By detecting the change in redox potential during the growth of B. subtilis natto, a good oxygen supply and state of the cell membrane were found to be beneficial to vitamin K2 synthesis. A two-step RSM was used to optimize the operation parameters and substrate concentration in the new residue-free fermentation culture. The optimal conditions for the residue-free medium and control were determined. The optimum concentrations of soybean flour, corn flour, and peptone were 78.9, 72.4, and 24.8 g/L, respectively. The optimum rotational speed and volume of the culture medium using a shaking flask were 117 rpm and 10%, respectively. The state and composition of the cell membranes were more stable when engineered bacteria were cultured in this residue-free fermentation medium. Finally, the concentration of MK-7 increased by 37% to 18.9 mg/L, and the fermentation time was shortened by 24 h.
Collapse
|
23
|
Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, Coleman NV. Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:1620-1630. [PMID: 31250633 DOI: 10.1021/acssynbio.9b00077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.
Collapse
Affiliation(s)
- Yanwei Ma
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dale D. McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark V. Somerville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Mahdinia E, Demirci A, Berenjian A. Biofilm reactors as a promising method for vitamin K (menaquinone-7) production. Appl Microbiol Biotechnol 2019; 103:5583-5592. [PMID: 31152205 DOI: 10.1007/s00253-019-09913-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Menaquinone-7 (MK-7) is the most potent subtype of vitamin K with extraordinarily high half-life in the circulatory system. Therefore, MK-7 plays a critical role in promoting human wellbeing today. Studies on MK-7 every year show more and more magnificent benefits of it in preventing cardiovascular diseases and osteoporosis to battling cancer cells, Alzheimer's and Parkinson's diseases. Thus, it needs to be supplemented to daily diet for accumulative and long-term benefits. Chemical synthesis of MK-7 produces a significant cis-isomer form of it, which has no biological activity. Fortunately, due to its key role in electron transfer in bacteria, trans-MK-7 is biosynthesized by especially Gram-positive strains mainly Bacillus genus. Concordantly, MK-7 could be produced via solid or liquid state fermentation strategies. In either regime, when static fermentation is applied in the absence of agitation and aeration, operational issues arise such as heat and mass transfer inefficiencies. Thus, scaling up the process becomes a challenge. On the other hand, studies have indicated that biofilm and pellicle formation that occur in static fermentations are key characteristics for extracellular MK-7 secretion. Therefore, this review covers the most recent discoveries of the therapeutic properties of MK-7 and optimization attempts at increasing its biosynthesis in different media compositions and effective growth parameters as well as the cutting-edge use of biofilm reactors where B. subtilis cells have the infrastructures to form mature biofilm formations on plastic composite supports. Biofilm reactors therefore can provide robust extracellular MK-7 secretion while simultaneously enduring high agitation and aeration rates, which then address the scale-up and operational issues associated with static fermentation strategies.
Collapse
Affiliation(s)
- Ehsan Mahdinia
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, State College, PA, USA. .,The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aydin Berenjian
- Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| |
Collapse
|
25
|
Yang S, Cao Y, Sun L, Li C, Lin X, Cai Z, Zhang G, Song H. Modular Pathway Engineering of Bacillus subtilis To Promote De Novo Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:70-81. [PMID: 30543412 DOI: 10.1021/acssynbio.8b00258] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Menaquinone-7 (MK-7), a valuable vitamin K2, plays an important role in the prevention of osteoporosis and cardiovascular calcification. We chose B. subtilis 168 as the chassis for the modular metabolic engineering design to promote the biosynthesis of MK-7. The biosynthetic pathway of MK-7 was categorized into four modules, namely, the MK-7 pathway (Module I), the shikimate (SA) pathway (Module II), the methylerythritol phosphate (MEP) pathway (Module III), and the glycerol metabolism pathway (Module IV). Overexpression of menA (Module I) resulted in 6.6 ± 0.1 mg/L of MK-7 after 120 h fermentation, which was 2.1-fold that of the starting strain BS168NU (3.1 ± 0.2 mg/L). Overexpression of aroA, aroD, and aroE (Module II) had a negative effect on the synthesis of MK-7. Simultaneous overexpression of dxs, dxr, yacM, and yacN (Module III) enabled the yield of MK-7 to 12.0 ± 0.1 mg/L. Moreover, overexpression of glpD (Module IV) resulted in an increase of the yield of MK-7 to 13.7 ± 0.2 mg/L. Furthermore, deletion of dhbB reduced the consumption of the intermediate metabolite isochorismate, thus promoting the yield of MK-7 to 15.4 ± 0.6 mg/L. Taken together, the final resulting strain MK3-MEP123-Gly2-Δ dhbB with simultaneous overexpression of menA, dxs, dxr, yacM-yacN, glpD and deletion of dhbB enabled the yield of MK-7 to 69.5 ± 2.8 mg/L upon 144 h fermentation in a 2 L baffled flask.
Collapse
Affiliation(s)
- Shaomei Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Liming Sun
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhigang Cai
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, China
| | - Guoyin Zhang
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|