1
|
Samizo S, Kaneko H. Predictive Modeling of HMG-CoA Reductase Inhibitory Activity and Design of New HMG-CoA Reductase Inhibitors. ACS OMEGA 2023; 8:27247-27255. [PMID: 37546661 PMCID: PMC10399166 DOI: 10.1021/acsomega.3c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
As blood cholesterol increases, it accumulates in the intima of blood vessels, elevating the risk of atherosclerosis and coronary artery disease. Drugs that inhibit enzymes essential for cholesterol synthesis are effective in improving blood cholesterol levels. Statins are used to treat hypercholesterolemia as they inhibit 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR), the rate-limiting enzyme in cholesterol synthesis. Statins are known to exert their effects by translocating to the liver, where they are taken up by the organic anion transporting polypeptide 1B1 (OATP1B1). Therefore, we hypothesized that a compound with high HMGR inhibitory activity and high affinity for OATP1B1 would be an excellent new therapeutic agent for hypercholesterolemia with increased liver selectivity and fewer side effects. In this study, we developed two models for predicting HMGR inhibitory activity and OATP1B1 affinity to propose the chemical structure of a new therapeutic agent for hypercholesterolemia with both high inhibitory activity and high liver selectivity. HMGR inhibitory activity and OATP1B1 affinity prediction models were constructed with high prediction accuracy for the test data: r2 = 0.772 and 0.768, respectively. New chemical structures were then input into these models to search for candidate compounds. We found compounds with higher HMGR inhibitory activity and OATP1B1 affinity than rosuvastatin, the most recently developed statin drug, and compounds that did not have a common structure of statins with high HMGR inhibitory activity.
Collapse
|
2
|
Zou M, Nong C, Yu Z, Cai H, Jiang Z, Xue R, Huang X, Sun L, Zhang L, Wang X. The role of invariant natural killer T cells and associated immunoregulatory factors in triptolide-induced cholestatic liver injury. Food Chem Toxicol 2020; 146:111777. [DOI: 10.1016/j.fct.2020.111777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
|
3
|
Wang Z, Shang H, Li Y, Zhang C, Dong Y, Cui T, Zhang H, Ci X, Yi X, Zhang T, Yan F, Zhang Y, Huang X, Wu W, Liu C. Transporters (OATs and OATPs) contribute to illustrate the mechanism of medicinal compatibility of ingredients with different properties in yuanhuzhitong prescription. Acta Pharm Sin B 2020; 10:1646-1657. [PMID: 33088685 PMCID: PMC7564327 DOI: 10.1016/j.apsb.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
Various medicinal ingredients with different tastes are combined according to the theory of compatibility in Chinese materia medica to achieve a better efficacy, while the mechanism was not very clear. Here, the authors studied the interaction between ingredients and human transporters such as the kidney transporters OAT1 and OAT3, the liver transporters OATP1B1 and OATP1B3, and the intestine transporter OATP2B1 to discern the compatibility mechanism of ingredients with different tastes in the Yuanhuzhitong preparation (YHP) comprising Corydalis yanhusuo (CYH) and Angelica dahurica (AD), which could relieve pain by restraining the central system. The results show that tetrahydropalmatine (TDE), the major component of CYH, could be transported by OAT3 into kidney, OATP1B1 and OATP1B3 into liver, while imperatorin (IPT) and isoimperatorin (ISP), the two key components of AD, and AD extract showed strong inhibition to OAT1 and OAT3. What's more, AD extract also exerted strongly inhibition to human transporters OATP1B1 and OATP1B3. It was also detected that IPT, ISP, and AD extract significantly downregulated the expression of Oatp1a1, Oatp1a4, and Oatp1b2 of liver in mice. The in vivo results show that the concentration of TDE in liver and kidney significantly decreased, while the TDE concentration in blood and brain were both significantly enhanced in the presence of IPT, ISP, and AD extract. These results suggest that the ingredients in AD with pungent taste could enhance the exposure of TDE in blood and brain by inhibiting the uptake of TDE in liver and kidney. That is to say, TDE with bitter taste could "flood up" into the central nervous system to play its therapeutic effect by the cut-off of that into liver and kidney in the presence of ingredients within AD. This paper not only proves the meridian distribution of CYH in liver and kidney with the role of OAT3, OATP1B1, and OATP1B3, but also illustrates how to improve the efficacy of CYH by reasonable compatibility with AD. This study may offer a valuable clue to illustrate the mechanism of compatibility theory.
Collapse
|
4
|
Méndez M, Matter H, Defossa E, Kurz M, Lebreton S, Li Z, Lohmann M, Löhn M, Mors H, Podeschwa M, Rackelmann N, Riedel J, Safar P, Thorpe DS, Schäfer M, Weitz D, Breitschopf K. Design, Synthesis, and Pharmacological Evaluation of Potent Positive Allosteric Modulators of the Glucagon-like Peptide-1 Receptor (GLP-1R). J Med Chem 2019; 63:2292-2307. [PMID: 31596080 DOI: 10.1021/acs.jmedchem.9b01071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The therapeutic success of peptidic GLP-1 receptor agonists for treatment of type 2 diabetes mellitus (T2DM) motivated our search for orally bioavailable small molecules that can activate the GLP-1 receptor (GLP-1R) as a well-validated target for T2DM. Here, the discovery and characterization of a potent and selective positive allosteric modulator (PAM) for GLP-1R based on a 3,4,5,6-tetrahydro-1H-1,5-epiminoazocino[4,5-b]indole scaffold is reported. Optimization of this series from HTS was supported by a GLP-1R ligand binding model. Biological in vitro testing revealed favorable ADME and pharmacological profiles for the best compound 19. Characterization by in vivo pharmacokinetic and pharmacological studies demonstrated that 19 activates GLP-1R as positive allosteric modulator (PAM) in the presence of the much less active endogenous degradation product GLP1(9-36)NH2 of the potent endogenous ligand GLP-1(7-36)NH2. While these data suggest the potential of small molecule GLP-1R PAMs for T2DM treatment, further optimization is still required towards a clinical candidate.
Collapse
Affiliation(s)
- María Méndez
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Hans Matter
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Elisabeth Defossa
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sylvain Lebreton
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Ziyu Li
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Matthias Lohmann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Matthias Löhn
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Hartmut Mors
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Michael Podeschwa
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Nils Rackelmann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Jens Riedel
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Pavel Safar
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - David S Thorpe
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Matthias Schäfer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Dietmar Weitz
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Kristin Breitschopf
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany
| |
Collapse
|
5
|
Wang H, Sun P, Wang C, Meng Q, Liu Z, Huo X, Sun H, Ma X, Peng J, Liu K. Pharmacokinetic changes of cefdinir and cefditoren and its molecular mechanisms in acute kidney injury in rats. J Pharm Pharmacol 2018; 70:1503-1512. [PMID: 30047127 DOI: 10.1111/jphp.12994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/07/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Acute kidney injury (AKI) was a common organ damage that often occurred after cisplatin. This study was aimed at investigating the pharmacokinetic changes of cefdinir and cefditoren in AKI rats, and elucidating the possible molecular mechanisms. METHODS The renal injury model was established by intraperitoneal injection of cisplatin (12 mg/kg). Plasma creatinine, blood urea nitrogen, the mRNA expression of Kim-1, hematoxylin and eosin staining and Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay were used to measure the degree of renal damage. On this basis, the pharmacokinetic changes of cefdinir and cefditoren were investigated in normal and AKI rats. RT-PCR and Western blot were performed to clarify the molecular mechanisms for the changes in the related transporters expression. KEY FINDINGS The cumulative urinary excretion of cefdinir was significantly decreased and the plasma concentration was remarkably increased in AKI rats. The expression of organic anion transporter 1 (Oat1) and Oat3 in kidney was decreased. However, pharmacokinetics of cefditoren was not influenced. The expression of organic anion-transporting polypeptide 1a1 (Oatp1a1), Oatp1a4, Oatp1b2 and multidrug resistance-associated protein 2 (Mrp2) in liver was unchanged in AKI rats. CONCLUSIONS The molecular mechanism of decreased expression of Oat1 and Oat3 was achieved through activating p53, and then increasing the expression of Bax and Caspase-3 and down regulating Bcl-2 in AKI rats. On this basis, the cumulative urinary excretion of cefdinir was significantly decreased and the plasma concentration of cefdinir was remarkably increased in AKI rats. However, the pharmacokinetic changes of cefditoren were not observed. Accordingly, cephalosporin antibiotics such as cefditoren should be firstly selected for the treatment in patients with AKI in clinic.
Collapse
Affiliation(s)
- Hepeng Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Department of Pharmacy, Dalian Children's Hospital, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian, China
| |
Collapse
|