1
|
Santiviago C, Ríos A, Caro F, Goycoechea N, Yelpo A, Hernández Dossi G, Castelló E. Phosphorus recovery from EBPR sludges: influence of sludge source and measurement challenges after thermal hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125891. [PMID: 40412173 DOI: 10.1016/j.jenvman.2025.125891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/13/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Ensuring accurate total phosphorus (TP) quantification in sludge is essential for assessing P recovery potential and optimizing wastewater management. This study addresses two critical aspects: the reliability of TP measurement techniques and the influence of sludge composition on P solubilization during thermal hydrolysis (TH). First, the challenges associated with TP determination in untreated and post-TH sludge were evaluated. The Standards in Measurements and Testing (SMT) extraction protocol-a simple and widely used method often applied to biological sludges-was found to underestimate TP by up to 34 % in matrices such as post-TH sludge, compared to more robust digestion methods. While previous studies have reported qualitative discrepancies among extraction methods, this work quantifies the bias under TH conditions through a benchmark combining mass balance analysis and Monte Carlo simulations. Using the proposed methodology, results highlight the importance of selecting appropriate TP quantification methods tailored to sludge characteristics to ensure accurate recovery assessments. Second, the influence of biological sludge sources on P release during TH was evaluated using two sludge samples: one from a full-scale wastewater treatment plant (S1) and another from a lab-scale sequencing batch reactor (S2). Results showed significant differences in P release percentages. Soluble reactive P recovery exceeded 78 % in S2 but remained below 25 % in S1. Solution 31P NMR showed that both sludges were initially rich in polyphosphate (poly-P) (∼80 %), yet after TH poly-P in S1 was almost completely hydrolyzed to orthophosphate, which remained bound in the residual solid. In contrast, S2 produced mainly pyrophosphate and retained some poly-P. Elucidation of the precise link between poly-P structure, its interaction with metals, and the resulting P release efficiency warrants further high-resolution analysis.
Collapse
Affiliation(s)
- Claudia Santiviago
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, CP: 11300, Montevideo, Uruguay.
| | - Axel Ríos
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, CP: 11300, Montevideo, Uruguay
| | - Florencia Caro
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, CP: 11300, Montevideo, Uruguay
| | - Nicolás Goycoechea
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, CP: 11300, Montevideo, Uruguay
| | - Agustina Yelpo
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, CP: 11300, Montevideo, Uruguay
| | - Gonzalo Hernández Dossi
- Nuclear Magnetic Resonance Laboratory, Department of Organic Chemistry, Faculty of Chemistry, Universidad de la República, CP: 11800, Montevideo, Uruguay
| | - Elena Castelló
- Biotechnological Processes for the Environment Group, Faculty of Engineering, Universidad de la República, CP: 11300, Montevideo, Uruguay
| |
Collapse
|
2
|
Wang L, Zhou J, Jia Q, Ma X, Zhao Y, Gong L, Zhang H. Anaerobic digestion of hydrothermally pretreated dewatered sewage sludge: effects of process conditions on methane production and the fate of phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66767-66780. [PMID: 37099108 DOI: 10.1007/s11356-023-26990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/09/2023] [Indexed: 05/25/2023]
Abstract
The hydrothermal pretreatment (HTP) characteristics and the fate of phosphorus (P) and anaerobic digestion (AD) performance of dewatered sewage sludge (DSS) were investigated at different hydrothermal conditions. The maximum methane yield reached 241 mL CH4/g COD when the hydrothermal conditions were 200 °C-2 h-10% (A4), and the yield was 78.28% higher than that without pretreatment (A0) and 29.62% higher than that of the initial hydrothermal conditions (A1, 140 °C-1 h-5%). Proteins, polysaccharides, and volatile fatty acids (VFAs) were the main hydrothermal products of DSS. 3D-EEM analysis revealed that tyrosine, tryptophan proteins, and fulvic acids decreased after HTP, but the content of humic acid-like substances increased, and this phenomenon was more noticeable after AD. Solid-organic P was converted into liquid-P during the hydrothermal process, and nonapatite inorganic P was converted into organic P during AD. All samples achieved positive energy balance, and the energy balance of A4 was 10.50 kJ/g VS. Microbial analysis showed that the composition of the anaerobic microbial degradation community changed as the sludge organic composition was altered. Results showed that the HTP improved the anaerobic digestion of DSS.
Collapse
Affiliation(s)
- Luyu Wang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Jun Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Qinwei Jia
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Xiaofan Ma
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Yuhang Zhao
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Lei Gong
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China.
| | - Haonan Zhang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| |
Collapse
|
3
|
Lv J, Liu B, Gong L, Chen X, Tian L, Li Y, Jiang J. Sludge disintegration and phosphorus migration in anaerobic fermentation of waste activated sludge by the addition of EDTA-2Na. ENVIRONMENTAL TECHNOLOGY 2023; 44:1145-1155. [PMID: 34666628 DOI: 10.1080/09593330.2021.1996466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The effects of the addition of EDTA-2Na on sludge disintegration and phosphorus (P) migration during anaerobic fermentation (AF) of waste activated sludge (WAS) are investigated. The efficiency of sludge disintegration was positively correlated with the dose of EDTA-2Na from 0.5-2.0 g/g SS, and an enormous quantity of P was liberated into the aqueous phase, accompanied by sludge disintegration. The proper dose of EDTA-2Na for P release from WAS was 1.5 g/g SS, with an orthophosphate concentration of 394.72 mg/L. P release was more consistent with the pseudo second-order kinetic model. The migration of P species during AF with EDTA-2Na addition was also studied. Orthophosphate was the main species in both of the liquid phase and the loosely bound extracellular polymeric substances (EPS), but organic P (OP) was much more abundant in tightly bound EPS. Inorganic P (IP) was the dominant P speciation in the solid and was mainly distributed in the fraction of non-apatite IP, which accounted for more than 62.8% of IP in the presence of EDTA-2Na. In addition, both IP and OP in the solid contributed to the accumulation of P and the former was outperformed. Furthermore, the increased total dissolved P mainly came from cells. However, the fermented sludge tended to be smaller and to have low compressibility, which is detrimental to its further treatment.
Collapse
Affiliation(s)
- Jinghua Lv
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Xinxiang, People's Republic of China
| | - Bingru Liu
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Li Gong
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Xingyue Chen
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Linlin Tian
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Yunbei Li
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Xinxiang, People's Republic of China
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, People's Republic of China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, People's Republic of China
- International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Xinxiang, People's Republic of China
| |
Collapse
|
4
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Mining phosphorus from waste streams at wastewater treatment plants: a review of enrichment, extraction, and crystallization methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28407-28421. [PMID: 36680723 DOI: 10.1007/s11356-023-25388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.
Collapse
Affiliation(s)
- Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Yuye Xu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Ting Guo
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Hongliang Dai
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
5
|
Zhang Q, Cui G, He X, Wang Z, Tang T, Zhao Q, Liu Y. Effects of voltage and pressure on sludge electro-dewatering process and the dewatering mechanisms investigation. ENVIRONMENTAL RESEARCH 2022; 212:113490. [PMID: 35594958 DOI: 10.1016/j.envres.2022.113490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Electro-dewatering technology shows a good application prospect because of its high efficiency in removing water from sludge and low energy consumption, but the potential mechanisms of sludge electro-dewatering have not been investigated in depth, which seriously limits the further development and application of electro-dewatering technology. In this study, the effects of voltage and pressure on sludge electro-dewatering performance, physicochemical characteristics and extracellular polymeric substances (EPS) compositions and distributions were investigated. The spatial distributions of EPS main components, including polysaccharide (PS) and protein (PN), were characterized by a confocal laser scanning microscopy (CLSM). The experimental results showed that under the conditions of a voltage of 40 V and a pressure of 90 kPa, the moisture content of sludge was reduced from 83.15% to 53.12%, and the bound water content of sludge in the anode layer, middle layer and cathode layer were decreased significantly from 1.16 g/g dry solid (DS) to 0.20, 0.47 and 0.35 g/g DS, respectively. The PN content of EPS in anode layer was significantly lower than that in cathode layer due to the electrochemical oxidation, while the variation of PS content showed the opposite trend, which agreed with the results visualized by CLSM. Pearson's correlation coefficient and hierarchical cluster analysis revealed that PN in TB-EPS was the major factor influencing the effect of sludge electro-dewatering. This work can be helpful to understand the potential mechanisms of electro-dewatering and provide theoretical support for the further popularization and application of electro-dewatering technology.
Collapse
Affiliation(s)
- Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Xiao He
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Qing Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| |
Collapse
|
6
|
Deng H, Liu H, Jin M, Xiao H, Yao H. Phosphorus transformation during the carbonaceous skeleton assisted thermal hydrolysis of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154252. [PMID: 35247403 DOI: 10.1016/j.scitotenv.2022.154252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
On the basis of the carbonaceous skeleton assisted thermal hydrolysis that we proposed to achieve efficient sludge dewatering, this work further explored phosphorus (P) transformation in the process. The results showed that during independent thermal hydrolysis in the temperature range of 120-240 °C, organic-P was first decomposed into soluble-P and particulate-P in liquid, and then combined with Ca, Fe, and Al to form more apatite-P (AP) and less non-apatite inorganic-P (NAIP). When the skeleton assisted the sludge thermal hydrolysis, the turning point of the hydrolysis temperature would reduce from 180 °C to 150 °C, at which the liquid-P began to decrease and the organic-P generally decomposed. Moreover, the increment in the content of AP halved while that of NAIP doubled compared to that in the process without the carbonaceous skeleton. These effects come from the exogenous components introduced by adding the skeleton, which were different from the sludge. Compared with the P-rich compound and metal elements that tend to bond with phosphate introduced by the skeleton, hemicellulose as a main organic component played a leading role in the different P transformations of AP and NAIP. The hemicellulose slightly increased the acidity of sludge products, thereby inhibiting AP production and promoting the production of recyclable NAIP. Overall, the carbonaceous skeleton assisted thermal hydrolysis was beneficial for P recovery with a very low filtrate loss rate.
Collapse
Affiliation(s)
- Hongping Deng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Minghao Jin
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Zheng X, Shen M, Ying Z, Feng Y, Wang B, Dou B. Correlating phosphorus transformation with process water during hydrothermal carbonization of sewage sludge via experimental study and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150750. [PMID: 34624291 DOI: 10.1016/j.scitotenv.2021.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 05/06/2023]
Abstract
Recently, hydrothermal carbonization (HTC) based phosphorus (P) recovery from sewage sludge (SS) has attracted considerable interests worldwide. However, they concentrated on P transformation in the hydrochars, while ignored that the variations of process water (PW) might influence P transformation, since it exposed to water thoroughly during HTC. In this study, correlation of P transformation with PW were examined via experimental study and mathematical modelling. The results showed that statistical significance (p < 0.05) of HTC temperature and feedwater pH on NH4+-N concentration in the PW was observed due to deamination and ring opening reactions of amino acids, confirming by their excellent correlation with R2 = 0.988. NH4+-N concentration dominated increasing PW pH, which stimulated the transformation of NAIP to AP. Associated model was developed with satisfactory R2 = 0.938. Although P transformation during HTC was significantly influenced by HTC temperature and feedwater pH, supporting by their strong correlation with R2 = 0.956, its transformation was PW pH dependent. Ultimately, detailed P transformation pathways during HTC was proposed with incorporation into the impact of PW. This work can provide new insights into HTC-based P transformation in the pristine SS.
Collapse
Affiliation(s)
- Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China
| | - Mengxuan Shen
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China.
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai 200092, PR China
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, PR China
| |
Collapse
|
8
|
Xu Q, Liu X, Wang D, Wu Y, Wang Q, Liu Y, Li X, An H, Zhao J, Chen F, Zhong Y, Yang Q, Zeng G. Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge. CHEMOSPHERE 2018; 213:276-284. [PMID: 30223132 DOI: 10.1016/j.chemosphere.2018.09.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/21/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
The recovery of phosphorus from waste activated sludge (WAS) was usually at low levels due to low phosphorus release. This study presents a novel, cost-effective and eco-friendly pretreatment method, e.g., using free ammonia (FA) to pretreat WAS, to enhance the phosphorus release from WAS. Experimental results showed that the phosphorus release from WAS was significantly increased after FA pretreatment at up to 189.4 mg NH3-N L-1 for 24 h, under which the released PO43--P (i.e. 101.6 ± 6.7 mg L-1) was higher than that pH 9 (i.e. 62.6 ± 4.54 mg L-1) and control (without pH and FA pretreatment) (i.e. 15.1 ± 1.86 mg L-1). More analysis revealed that the FA induced improvement in phosphorus release could be attributed to the disintegration of extracellular polymeric substances (EPS) and cell envelope of sludge cells. Moreover, the released phosphorus recovered as magnesium ammonium phosphate (MAP) was confirmed. The findings reported may guide engineers to develop an economic and practical strategy to enhance resources and energy recovery from WAS.
Collapse
Affiliation(s)
- Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hongxue An
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha, 410004, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|