1
|
Dadvar F, Elhamifar D. A Pd-containing ionic liquid modified magnetic graphene oxide nanocomposite (Fe 3O 4/GO-IL-Pd) as a powerful catalyst for the reduction of nitrobenzenes. NANOSCALE ADVANCES 2024:d4na00475b. [PMID: 39247858 PMCID: PMC11376075 DOI: 10.1039/d4na00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
A novel palladium-containing ionic liquid-modified magnetic graphene oxide nanocomposite (Fe3O4/GO-IL-Pd) is synthesized and its catalytic performance is studied in the reduction of nitrobenzenes. The Fe3O4/GO-IL-Pd nanocomposite was characterized by using FT-IR, PXRD, SEM, EDS, VSM, and TG analyses. These analyses showed good magnetic properties and high stability of the designed composite. Different derivatives of nitrobenzenes were applied as substrates, giving corresponding anilines in high to excellent yields (89-96%) at short reaction times (10-15 minutes). Also, the stability, reproducibility, and reusability of the Fe3O4/GO-IL-Pd nanocomposite were investigated under applied conditions. A leaching experiment was also performed to study the nature of the Fe3O4/GO-IL-Pd catalyst under the conditions used.
Collapse
Affiliation(s)
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University Yasouj 75918-74831 Iran
| |
Collapse
|
2
|
Petukhov DI, Weston J, Valeev RG, Johnson DJ. Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir-Blodgett Technique: Balancing Performance and Antifouling Properties. MEMBRANES 2024; 14:172. [PMID: 39195424 DOI: 10.3390/membranes14080172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
The reverse osmosis water treatment process is prone to fouling issues, prompting the exploration of various membrane modification techniques to address this challenge. The primary objective of this study was to develop a precise method for modifying the surface of reverse osmosis membranes to enhance their antifouling properties. The Langmuir-Blodgett technique was employed to transfer aminated graphene oxide films assembled at the air-liquid interface, under specific surface pressure conditions, to the polyamide surface with pre-activated carboxylic groups. The microstructure and distribution of graphene oxide along the modified membrane were characterized using SEM, AFM, and Raman mapping techniques. Modification carried out at the optimal surface pressure value improved the membrane hydrophilicity and reduced the surface roughness, thereby enhancing the antifouling properties against colloidal fouling. The flux recovery ratio after modification increased from 65% to 87%, maintaining high permeability. The modified membranes exhibited superior performance compared to the unmodified membranes during long-term fouling tests. This membrane modification technique can be easily scaled using the roll-to-roll approach and requires minimal consumption of the modifier used.
Collapse
Affiliation(s)
- Dmitrii I Petukhov
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - James Weston
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Rishat G Valeev
- Udmurt Federal Research Center of the Ural Brunch of Russian Academy of Sciences (UdmFRC of UB RAS), Izhevsk 426067, Russia
| | - Daniel J Johnson
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
3
|
The influence of ancillary NCS− ions on structural, spectroscopic, magnetic and biological properties of copper(II) l-argininato complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Mantovani S, Khaliha S, Marforio TD, Kovtun A, Favaretto L, Tunioli F, Bianchi A, Petrone G, Liscio A, Palermo V, Calvaresi M, Navacchia ML, Melucci M. Facile high-yield synthesis and purification of lysine-modified graphene oxide for enhanced drinking water purification. Chem Commun (Camb) 2022; 58:9766-9769. [PMID: 35959981 DOI: 10.1039/d2cc03256b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine-covalently modified graphene oxide (GO-Lys) was prepared by an innovative procedure. Lysine brushes promote enhanced adsorption of bisphenol A, benzophenone-4 and carbamazepine contaminants from tap water, with a removal capacity beyond the state of the art.
Collapse
Affiliation(s)
- Sebastiano Mantovani
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Sara Khaliha
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Tainah Dorina Marforio
- Alma Mater Studiorum - University of Bologna, Department of Chemistry 'G. Ciamician', via Selmi 2, 40129 Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Laura Favaretto
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesca Tunioli
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Antonio Bianchi
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Gaetana Petrone
- Consiglio Nazionale delle Ricerche, Institute for Microelectronics and Microsystems (CNR-IMM), via del fosso del cavaliere 100, 00133 Roma, Italy
| | - Andrea Liscio
- Consiglio Nazionale delle Ricerche, Institute for Microelectronics and Microsystems (CNR-IMM), via del fosso del cavaliere 100, 00133 Roma, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Matteo Calvaresi
- Alma Mater Studiorum - University of Bologna, Department of Chemistry 'G. Ciamician', via Selmi 2, 40129 Bologna, Italy
| | - Maria Luisa Navacchia
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche, Institute of Organic Synthesis and Photoreactivity (CNR-ISOF) via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
5
|
Amarasekara Y, Perera IC, Katuwavila NP, Jayakody RS, Amaratunga GA, Weerasinghe L. Evaluation of novel nanocomposites for enhanced anticancer activity of XLAsp-P2 peptide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Highly efficient porous magnetic polydopamine/copper phosphate with three-dimensional hierarchical nanoflower morphology as a selective platform for recombinant proteins separation. Colloids Surf B Biointerfaces 2021; 209:112149. [PMID: 34653906 DOI: 10.1016/j.colsurfb.2021.112149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Abstract
The separation and purification of recombinant pharmaceutical proteins is a fundamental and challenging step in the biotechnology industry. Hierarchical nanostructures with unique features and high stability can be used as efficient adsorbents. In this study, hierarchical magnetic polydopamine-copper phosphate nanoflowers (Cu-PDA MNFs) were synthesized as high-performance magnetic adsorbents in a simple and low-cost method based on green chemistry. The prepared hybrid Cu-PDA MNFs revealed great performance for separating pure recombinant human growth hormone (rhGH) and the rhGH acquired from recombinant Pichia pastoris yeast fermentation. The analysis confirmed that Cu-PDA MNFs exhibited a high adsorption capacity of 257.4 mg rhGH g-1 Cu-PDA MNFs and a fast adsorption rate for approaching the adsorption equilibrium within less than 30 min with a recovery efficiency of 74% of rhGH from the real sample. In addition, recycling tests demonstrated the stability and recyclability of Cu-PDA MNFs for at least six cycles with almost constant adsorption capacity and no toxicity. Based on these results, Cu-PDA MNFs could be considered as a promising candidate for separation and purification of rhGH. This work presents a new approach to using organic-inorganic nanoflowers as the hierarchical nanostructure for purification of pharmaceutical proteins with high performance.
Collapse
|
8
|
Design and synthesis of a novel nanocomposite based on magnetic dopamine nanoparticles for purification of α-amylase from the bovine milk. Sci Rep 2021; 11:13428. [PMID: 34183749 PMCID: PMC8239001 DOI: 10.1038/s41598-021-92919-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, a novel nanocomposite based on magnetic nanoparticles decorated by dopamine were reported. Three modified magnetic nanocomposites by dopamine were offered with different type of linkers. The mentioned magnetic nanocomposites were applied to separate α-amylase protein from fresh bovine milk. All of the magnetic nanocomposites were characterized and investigated by using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, field-emission scanning microscope, X-ray diffraction pattern, and vibrating-sample magnetometer analyses. To investigate the purifying application, sodium dodecyl sulfate polyacrylamide gel electrophoresis, one-dimensional isoelectric focusing gel electrophoresis, and alpha-amylase activity assay were employed. With paying attention to factors such as yield of purification and concentration of separated protein by each of magnetic nanocomposite, it could be concluded that the length of linkers played an important role in α-amylase protein separation. According to the results, the best separation and purification of α-amylase protein with 49.83% recovery and 40.11-fold purification efficiency was related to longest length linker, 1,4-butanediol diglycidyl ether, because of considerable conjugation with nanocomposite. Also, docking calculation has shown that the binding energy is - 1.697 kcal/mol and ΔG = - 6.844 kcal/mol which result that the interaction process between dopamine and α-amylase protein is spontaneous.
Collapse
|
9
|
Dramou P, Dahn SL, Wang F, Sun Y, Song Z, Liu H, He H. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
11
|
Arul P, Huang ST, Gowthaman NSK, Mani G, Jeromiyas N, Shankar S, John SA. Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A. Anal Chim Acta 2021; 1150:338228. [PMID: 33583553 DOI: 10.1016/j.aca.2021.338228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Affiliation(s)
- P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - N S K Gowthaman
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram, 624 302, Dindigul, Tamilnadu, India
| | - G Mani
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Nithiya Jeromiyas
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sekar Shankar
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram, 624 302, Dindigul, Tamilnadu, India
| |
Collapse
|
12
|
Liu J, Liu Y, Liang Y, Ma F, Bai Q. Poly- l-lysine-functionalized magnetic graphene for the immobilized metal affinity purification of histidine-rich proteins. NEW J CHEM 2021. [DOI: 10.1039/d1nj00059d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal affinity-poly-l-lysine functionalization on a magnetic graphene substrate for simultaneously improving the adsorption selectivity toward histidine-rich proteins and inhibiting the non-specific adsorption.
Collapse
Affiliation(s)
- Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yingying Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yixun Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| |
Collapse
|
13
|
Aziz A, Twyman LJ. Synthesis of Oligomeric and Monomeric Functionalized Graphene Oxides and a Comparison of Their Abilities to Perform as Protein Ligands and Enzyme Inhibitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44941-44948. [PMID: 31697476 PMCID: PMC7007006 DOI: 10.1021/acsami.9b12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) is a versatile, monomolecular layered nanomaterial that possesses various oxygen-containing functionality on its large surface. These characteristics allow GO to interact with a variety of materials and to be applied towards a number of areas. The strength and selectivity of these interactions can be improved significantly through further functionalization. In this paper, we describe the functionalization of GO and its application as a protein ligand and an enzyme inhibitor. The work reported in this paper details how chymotrypsin inhibition can be improved using GO functionalized with a monomeric and oligomer layer of tyrosine. The results indicated that the mono- and oligo-functionalized systems performed extremely well, with Ki values nearly four times better than GO alone. Our original premise was that the oligomeric system would bind better because of the length of the oligomeric arms and potential for a high degree of flexibility. However, the results clearly showed that the shorter monomeric system was the better ligand/inhibitor. This was due to weaker intramolecular interactions between the aromatic side chains of tyrosine and the aromatic surface of GO. Although these are possible for both systems, they are cooperative and therefore stronger for the oligomeric functionalized GO. As such, the protein must compete and overcome these cooperative intramolecular interactions before it can bind to the functionalized GO, whereas the tyrosines on the surface of the monomeric system interact with the surface of GO through a significantly weaker monovalent interaction, but interact cooperatively with the protein surface.
Collapse
Affiliation(s)
- Azrah
Abdul Aziz
- Department of Chemistry, University
of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Lance J. Twyman
- Department of Chemistry, University
of Sheffield, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
14
|
Zhao L, Li L, Zhu C, Ghulam M, Qu F. pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles for specific recognition and adsorption of proteins. Anal Chim Acta 2019; 1097:161-168. [PMID: 31910956 DOI: 10.1016/j.aca.2019.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/07/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022]
Abstract
A new adsorbent based on pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles was developed for specific recognition and efficient adsorption of proteins. Arising from the synergistic effect of specific affinity of apatamer on protein and tunable hydrophobic/hydrophilic property of pH-responsive polymer, the adsorbent exhibited excellent adsorption capacity for target protein. Notably, because of the pH-responsive property of the polymer, the adsorption and desorption process could be regulated through varying environmental pH. The resultant adsorbent that immobilized with lysozyme binding aptamer was successfully applied in specific recognition and efficient adsorption of lysozyme in egg white samples and good recovery results in the range of 95.2-103.2% were obtained. Moreover, the adsorbent immobilized with cytochrome C binding aptamer also exhibited satisfactory adsorption to cytochrome C. The synergistic effect of pH-responsive polymer and aptamer promoted the recognition selectivity and adsorption capacity to target protein, illustrating a facile way for construction of more specific protein adsorbents.
Collapse
Affiliation(s)
- Liping Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Chao Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Murtaza Ghulam
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
15
|
Dual-functional polymer-modified magnetic nanoparticles for isolation of lysozyme. Anal Chim Acta 2018; 1035:70-76. [DOI: 10.1016/j.aca.2018.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 07/07/2018] [Indexed: 12/30/2022]
|