1
|
Ali Z, Kaur S, Kukhta T, Abu-Saleh AAAA, Jhunjhunwala A, Mitra A, Trant JF, Sharma P. Structural Mapping of the Base Stacks Containing Post-transcriptionally Modified Bases in RNA. J Phys Chem B 2023. [PMID: 37369074 DOI: 10.1021/acs.jpcb.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Post-transcriptionally modified bases play vital roles in many biochemical processes involving RNA. Analysis of the non-covalent interactions associated with these bases in RNA is crucial for providing a more complete understanding of the RNA structure and function; however, the characterization of these interactions remains understudied. To address this limitation, we present a comprehensive analysis of base stacks involving all crystallographic occurrences of the most biologically relevant modified bases in a large dataset of high-resolution RNA crystal structures. This is accompanied by a geometrical classification of the stacking contacts using our established tools. Coupled with quantum chemical calculations and an analysis of the specific structural context of these stacks, this provides a map of the stacking conformations available to modified bases in RNA. Overall, our analysis is expected to facilitate structural research on altered RNA bases.
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sarabjeet Kaur
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Surface Chemistry and Catalysis: Characterisation and Application Team (COK-KAT), Leuven (Arenberg) Celestijnenlaan 200f─Box 2461, 3001 Leuven, Belgium
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Abd Al-Aziz A Abu-Saleh
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
- Binary Star Research Services, LaSalle, Ontario N9J 3X8, Canada
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
- Binary Star Research Services, LaSalle, Ontario N9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
2
|
Vangaveti S, Ranganathan SV, Agris PF. Physical Chemistry of a Single tRNA-Modified Nucleoside Regulates Decoding of the Synonymous Lysine Wobble Codon and Affects Type 2 Diabetes. J Phys Chem B 2022; 126:1168-1177. [PMID: 35119848 DOI: 10.1021/acs.jpcb.1c09053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 2-methylthio-modification (ms2-) of N6-threonylcarbonyladenosine (t6A37) at position-37 (ms2t6A37) in tRNAUUULys3 provides the needed stability between the tRNA anticodon and the human insulin mRNA codon AAG during translation, as determined by molecular dynamics simulation. Single-nucleoside polymorphisms of the human gene for the enzyme, Cdkal1 that post-transcriptionally modifies t6A37 to ms2t6A37 in tRNAUUULys3, correlate with type 2 diabetes mellitus. Without the ms2-modification, tRNAUUULys3 is incapable of correctly translating the insulin mRNA AAG codon for lysine at the site of protease cleavage between the A-chain and the C-peptide. By enhancing anticodon/codon cross-strand stacking, the ms2-modification adds stability through van der Waals interactions and dehydration of the ASL loop and cavity of the anticodon/codon minihelix but does not add hydrogen bonding of any consequence. Thus, the modifying enzyme Cdkal1, by adding a crucial ms2-group to tRNAUUULys3-t6A37, facilitates the decoding of the AAG codon and enables human pancreatic islets to correctly translate insulin mRNA.
Collapse
Affiliation(s)
- Sweta Vangaveti
- The RNA Institute, University at Albany, Albany, New York 12222, United States
| | - Srivathsan V Ranganathan
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97210 United States
| | - Paul F Agris
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710 United States
| |
Collapse
|
3
|
Hopfinger MC, Kirkpatrick CC, Znosko BM. Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides. Nucleic Acids Res 2020; 48:8901-8913. [PMID: 32810273 PMCID: PMC7498315 DOI: 10.1093/nar/gkaa654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
The most popular RNA secondary structure prediction programs utilize free energy (ΔG°37) minimization and rely upon thermodynamic parameters from the nearest neighbor (NN) model. Experimental parameters are derived from a series of optical melting experiments; however, acquiring enough melt data to derive accurate NN parameters with modified base pairs is expensive and time consuming. Given the multitude of known natural modifications and the continuing use and development of unnatural nucleotides, experimentally characterizing all modified NNs is impractical. This dilemma necessitates a computational model that can predict NN thermodynamics where experimental data is scarce or absent. Here, we present a combined molecular dynamics/quantum mechanics protocol that accurately predicts experimental NN ΔG°37 parameters for modified nucleotides with neighboring Watson–Crick base pairs. NN predictions for Watson-Crick and modified base pairs yielded an overall RMSD of 0.32 kcal/mol when compared with experimentally derived parameters. NN predictions involving modified bases without experimental parameters (N6-methyladenosine, 2-aminopurineriboside, and 5-methylcytidine) demonstrated promising agreement with available experimental melt data. This procedure not only yields accurate NN ΔG°37 predictions but also quantifies stacking and hydrogen bonding differences between modified NNs and their canonical counterparts, allowing investigators to identify energetic differences and providing insight into sources of (de)stabilization from nucleotide modifications.
Collapse
Affiliation(s)
| | | | - Brent M Znosko
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
4
|
Ohri A, P Seelam P, Sharma P. A quantum chemical view of the interaction of RNA nucleobases and base pairs with the side chains of polar amino acids. J Biomol Struct Dyn 2020; 39:5411-5426. [PMID: 32662328 DOI: 10.1080/07391102.2020.1787225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogen bonding between amino acids and nucleobases is important for RNA-protein recognition. As a first step toward understanding the physicochemical features of these contacts, the present work employs density functional theory calculations to critically analyze the intrinsic structures and strength of all theoretically possible model hydrogen-bonded complexes involving RNA nucleobase edges and polar amino acid side chains. Our geometry optimizations uncover a number of unique complexes that involve variable hydrogen-bonding characteristics, including conventional donor-acceptor interactions, bifurcated interactions and single hydrogen-bonded contacts. Further, significant strength of these complexes in the gas phase (-27 kJ mol-1 to -226 kJ mol-1) and solvent phase (-19 kJ mol-1 to -78 kJ mol-1) points toward the ability of associated contacts to provide stability to RNA-protein complexes. More importantly, for the first time, our study uncovers the features of complexes involving protonated nucleobases, as well as those involving the weakly polar cysteine side chain, and thereby highlights their potential importance in biological processes that involve RNA-protein interactions. Additional analysis on select base pair-amino acid complexes uncovers the ability of amino acid side chain to simultaneously interact with both nucleobases of the base pair, and highlights the greater strength of such interactions compared to base-amino acid interactions. Overall, our analysis provides a basic physicochemical framework for understanding the molecular basis of nucleic acid-protein interactions. Further, our quantum chemical data can be used to design better algorithms for automated search of these contacts at the RNA-protein interface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashita Ohri
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Preethi P Seelam
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana, India.,Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Kagra D, Prabhakar PS, Sharma KD, Sharma P. Structural Patterns and Stabilities of Hydrogen-Bonded Pairs Involving Ribonucleotide Bases and Arginine, Glutamic Acid, or Glutamine Residues of Proteins from Quantum Mechanical Calculations. ACS OMEGA 2020; 5:3612-3623. [PMID: 32118177 PMCID: PMC7045552 DOI: 10.1021/acsomega.9b04083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Ribonucleotide:protein interactions play crucial roles in a number of biological processes. Unlike the RNA:protein interface where van der Waals contacts are prevalent, the recognition of a single ribonucleotide such as ATP by a protein occurs predominantly through hydrogen-bonding interactions. As a first step toward understanding the role of hydrogen bonding in ribonucleotide:protein recognition, the present work employs density functional theory to provide a detailed quantum-mechanical analysis of the structural and energetic characteristics of 18 unique hydrogen-bonded pairs involving the nucleobase/nucleoside moiety of four canonical ribonucleotides and the side chains of three polar amino-acid residues (arginine, glutamine, and glutamic acid) of proteins. In addition, we model five new pairs that are till now not observed in crystallographically identified ribonucleotide:protein complexes but may be identified in complexes crystallized in the future. We critically examine the characteristics of each pair in its ribonucleotide:protein crystal structure occurrence and (gas phase and water phase) optimized intrinsic structure. We further evaluated the interaction energy of each pair and characterized the associated hydrogen bonds using a number of quantum mechanics-based relationships including natural bond orbital analysis, quantum theory atoms in molecules analysis, Iogansen relationships, Nikolaienko-Bulavin-Hovorun relationships, and noncovalent interaction-reduced density gradient analysis. Our analyses reveal rich variability in hydrogen bonds in the crystallographic as well as intrinsic structure of each pair, which includes conventional O/N-H···N/O and C-H···O hydrogen bonds as well as donor/acceptor-bifurcated hydrogen bonds. Further, we identify five combinations of nucleobase and amino acid moieties; each of which exhibits at least two alternate (i.e., multimodal) structures that interact through the same nucleobase edge. In fact, one such pair exhibits four multimodal structures; one of which possesses unconventional "amino-acceptor" hydrogen bonding with comparable (-9.4 kcal mol-1) strength to the corresponding conventional (i.e., amino:donor) structure (-9.2 kcal mol-1). This points to the importance of amino-acceptor hydrogen bonds in RNA:protein interactions and suggests that such interactions must be considered in the future while studying the dynamics in the context of molecular recognition. Overall, our study provides preliminary insights into the intrinsic features of ribonucleotide:amino acid interactions, which may help frame a clearer picture of the molecular basis of RNA:protein recognition and further appreciate the role of such contacts in biology.
Collapse
Affiliation(s)
- Deepika Kagra
- Computational
Biochemistry Laboratory, Department of Chemistry, and Centre for Advanced
Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Preethi Seelam Prabhakar
- Center
for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology
Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Karan Deep Sharma
- Computational
Biochemistry Laboratory, Department of Chemistry, and Centre for Advanced
Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational
Biochemistry Laboratory, Department of Chemistry, and Centre for Advanced
Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Dans PD, Gallego D, Balaceanu A, Darré L, Gómez H, Orozco M. Modeling, Simulations, and Bioinformatics at the Service of RNA Structure. Chem 2019. [DOI: 10.1016/j.chempr.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Eubanks CS, Hargrove AE. RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry 2018; 58:199-213. [PMID: 30513196 DOI: 10.1021/acs.biochem.8b01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our awareness and appreciation of the many regulatory roles of RNA have dramatically increased in the past decade. This understanding, in addition to the impact of RNA in many disease states, has renewed interest in developing selective RNA-targeted small molecule probes. However, the fundamental guiding principles in RNA molecular recognition that could accelerate these efforts remain elusive. While high-resolution structural characterization can provide invaluable insight, examples of well-characterized RNA structures, not to mention small molecule:RNA complexes, remain limited. This Perspective provides an overview of the current techniques used to understand RNA molecular recognition when high-resolution structural information is unavailable. We will place particular emphasis on a new method, pattern recognition of RNA with small molecules (PRRSM), that provides rapid insight into critical components of RNA recognition and differentiation by small molecules as well as into RNA structural features.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| | - Amanda E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| |
Collapse
|