1
|
Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021; 33:467-490. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400-750 nm) and NIR-I (750-900 nm) imaging, the NIR-II has a longer wavelength of 1000-1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.
Collapse
Affiliation(s)
- Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaopeng Ai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Jinrong Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianrong Lai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
2
|
Yang Z, Zou W, Pan Y, Yong KT, Li L, Wang X, Liu D, Chen T, Xue D, Lin G. PEGylated CuInS 2/ZnS quantum dots inhibit neurite outgrowth by downregulating the NGF/p75 NTR/MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111378. [PMID: 33022524 DOI: 10.1016/j.ecoenv.2020.111378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The widespread application of cadmium-free CuInS2/ZnS QDs has raised great concern regarding their potential toxicity to humans. To date, toxicological data related to CuInS2/ZnS QDs are scarce. Neurons play extraordinary roles in regulating the activities of organs and systems, and serious consequences occur when neurons are damaged. Currently, the potential toxicity of CuInS2/ZnS QDs on neurons has not been fully elucidated. Here, we investigate the neurotoxicity of PEGylated CuInS2/ZnS (CuInS2/ZnS-PEG) QDs on neuron-like PC12 cells. We found that CuInS2/ZnS-PEG QDs were taken up by PC12 cells, but at a concentration range from 0 to 100 μg/mL, they did not affect the survival rate of the PC12 cells. In addition, we found that CuInS2/ZnS-PEG QDs significantly inhibited neurite outgrowth from and the differentiation of PC12 cells in the presence of NGF, while COOH-modified CuInS2/ZnS QDs or free PEG did not have a similar effect. Further studies showed that CuInS2/ZnS-PEG QDs obviously downregulated the expression of low-affinity NGF receptor (p75NTR) and subsequently negatively regulated the downstream MAPK cascade by dephosphorylating ERK1/2 and AKT. Taken together, these results suggest that CuInS2/ZnS-PEG QDs disturb NGF signal transduction from external stimuli to relevant internal signals, thus affecting normal biological processes such as neurite outgrowth and cell differentiation.
Collapse
Affiliation(s)
- Zhiwen Yang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Wenyi Zou
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Yongning Pan
- Department of Disease Prevention and Control, Shenzhen Baoan District Health Bureau, Shenzhen, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Li Li
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Dahui Xue
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
The Photoluminescence and Biocompatibility of CuInS2-Based Ternary Quantum Dots and Their Biological Applications. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Semiconductor quantum dots (QDs) have become a unique class of materials with great potential for applications in biomedical and optoelectronic devices. However, conventional QDs contains toxic heavy metals such as Pb, Cd and Hg. Hence, it is imperative to find an alternative material with similar optical properties and low cytotoxicity. Among these materials, CuInS2 (CIS) QDs have attracted a lot of interest due to their direct band gap in the infrared region, large optical absorption coefficient and low toxic composition. These factors make them a good material for biomedical application. This review starts with the origin and photophysical characteristics of CIS QDs. This is followed by various synthetic strategies, including synthesis in organic and aqueous solvents, and the tuning of their optical properties. Lastly, their significance in various biological applications is presented with their prospects in clinical applications.
Collapse
|
4
|
Chinnathambi S, Shirahata N. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:337-355. [PMID: 31068983 PMCID: PMC6493278 DOI: 10.1080/14686996.2019.1590731] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 05/08/2023]
Abstract
Luminescence probe has been broadly used for bio-imaging applications. Among them, near-infrared (NIR) quantum dots (QDs) are more attractive due to minimal tissue absorbance and larger penetration depth. Above said reasons allowed whole animal imaging without slice scan or dissection. This review describes in vitro and in vivo imaging of NIR QDs in the regions of 650-900 nm (NIR-I) and 1000-1450 nm (NIR-II). Also, we summarize the recent progress in bio-imaging and discuss the future trends of NIR QDs including group II-VI, IV-VI, I-VI, I-III-VI, III-V, and IV semiconductors.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- International Center for Young Scientists, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics, NIMS, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
- Department of Physics, Chuo University, Tokyo, Japan
| |
Collapse
|