1
|
Sasse S, Arrizabalaga-Larrañaga A, Sterk SS. Antiviral drugs in animal-derived matrices: A review. Heliyon 2024; 10:e37460. [PMID: 39309792 PMCID: PMC11416254 DOI: 10.1016/j.heliyon.2024.e37460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The ban of antiviral drugs in food-producing animals in several parts of the world, latest by Commission Delegated Regulation (EU) 2022/1644, has increased the need for food control laboratories to develop analytical methods and perform official controls. However, little is known about antiviral drugs, their use, and its analysis in food-producing animals in the EU. This review aims to provide insights into relevant viruses, antiviral drugs, and animal-derived matrices for analytical method development and monitoring purposes to implement in food control laboratories. For years, animal viruses, such as African swine fever and avian influenza, have caused many outbreaks. Besides, they led to large economic losses due to the applied control measures and a lack of available treatments. Considering these losses and the known effectiveness of authorized human antiviral drugs in different organisms, medicines such as amantadine in Chinese poultry have been misused. Various analytical methods, including screening assays and sensors (published 2016-2023), and mass spectrometry methods (published 2012-2023) have been outlined in this review for the monitoring of antiviral drugs in animal-derived matrices. However, pharmacokinetics information on metabolite formation and distribution of these substances in different animal-derived matrices is incomplete. Additionally, apart from a few countries, there is a lack of available data on the potential misuse of different antiviral drugs in animal-derived matrices. Although a handful of important antiviral drugs, such as influenza, broad-spectrum, antiretroviral, and herpes drugs, and animal-derived matrices, such as chicken muscle, are identified, the priority of the scope should be further specified by closing the aforementioned gaps.
Collapse
Affiliation(s)
- Samantha Sasse
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| | - Ane Arrizabalaga-Larrañaga
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| | - Saskia S. Sterk
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| |
Collapse
|
2
|
Tripathi A, Bonilla-Cruz J. Review on Healthcare Biosensing Nanomaterials. ACS APPLIED NANO MATERIALS 2023; 6:5042-5074. [DOI: 10.1021/acsanm.3c00941] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alok Tripathi
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Rajpur 382715, Gujarat India
| | - José Bonilla-Cruz
- Advanced Functional Materials and Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Avenida Alianza Norte Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León, México C.P. 66628
| |
Collapse
|
3
|
Chi H, Liu G. Carbon nanomaterial-based molecularly imprinted polymer sensors for detection of hazardous substances in food: recent progress and future trends. Food Chem 2023; 420:136100. [PMID: 37062085 DOI: 10.1016/j.foodchem.2023.136100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
The presence of various harmful substances in food is significantly risky to human health. Therefore, simple, rapid, and selective food hazard analysis tools have become a focus of sensing research. At present, molecularly imprinted polymers (MIPs) have attracted more and more attention because of their easy preparation and high selectivity. Due to their simple preparation, low cost, large specific surface area, and high conductivity, carbon nanomaterial can be used as sensing substrate carriers. Therefore, the combination of carbon nanomaterial with MIPs has attracted great attention. This paper summarizes the development, composition, and preparation methods of MIPs, as well as the latest research progress in carbon nanomaterials for the detection of various food hazards using sensors. In addition, the practical applications of carbon nanomaterial-based MIP sensors, their current challenges and future trends, and the ongoing efforts devoted to developing new and efficient carbon nanomaterial-based MIP sensing platforms are also introduced.
Collapse
Affiliation(s)
- Hai Chi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Bakhshpour-Yucel M. SPR-based sensing of Lysozyme using Lyz-MIP-modified graphene oxide surfaces. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Qi G, Qu F, Zhang L, Chen S, Bai M, Hu M, Lv X, Zhang J, Wang Z, Chen W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:9939. [PMID: 36560307 PMCID: PMC9785972 DOI: 10.3390/s22249939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This paper presents a straightforward method to develop a nanoporous graphene oxide (NGO)-functionalized quartz crystal microbalance (QCM) gas sensor for the detection of trimethylamine (TMA), aiming to form a reliable monitoring mechanism strategy for low-concentration TMA that can still cause serious odor nuisance. The synthesized NGO material was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy to verify its structure and morphology. Compared with the bare and GO-based QCM sensors, the NGO-based QCM sensor exhibited ultra-high sensitivity (65.23 Hz/μL), excellent linearity (R2 = 0.98), high response/recovery capability (3 s/20 s) and excellent repeatability (RSD = 0.02, n = 3) toward TMA with frequency shift and resistance. Furthermore, the selectivity of the proposed NGO-based sensor to TMA was verified by analysis of the dual-signal responses. It is also proved that increasing the conductivity did not improve the resistance signal. This work confirms that the proposed NGO-based sensor with dual signals provides a new avenue for TMA sensing, and the sensor is expected to become a potential candidate for gas detection.
Collapse
Affiliation(s)
- Guangyu Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Fangfang Qu
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 310002, China
| | - Lu Zhang
- School of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihao Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Mengyuan Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinyan Lv
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jinglei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zhenhe Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Wei Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
6
|
A review on rapid detection of modified quartz crystal microbalance sensors for food: Contamination, flavour and adulteration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yang Y, Yang L, Ma Y, Wang X, Zhang J, Bai B, Yu L, Guo C, Zhang F, Qin S. A novel metal-organic frameworks composite-based label-free point-of-care quartz crystal microbalance aptasensing platform for tetracycline detection. Food Chem 2022; 392:133302. [PMID: 35636180 DOI: 10.1016/j.foodchem.2022.133302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022]
Abstract
A novel label-free point-of-care quartz crystal microbalance (QCM) aptasensing platform based on metal-organic frameworks (MOFs) and gold nanoparticles (AuNPs) was fabricated for tetracycline (TC) detection. MOFs (HKUST-1) and AuNPs were modified onto the sensing interface of QCM sensor to enhance the sensing performance of the QCM aptasensor. TC aptamer with sulfhydryl group was fixed through Au-S bond. The recognition performance of the aptasensor was predicted and verified by the computer simulation. At the optimal conditions, the frequency change of the sensor was adopted for quantitative detection of TC. The prepared QCM aptasensor exhibited a wide linear range from 1 × 10-10 g mL-1 to 1 × 10-5 g mL-1 with low limit of detection (0.8 × 10-11 g mL-1). High sensitivity, good selectivity, acceptable recoveries (87.6-91.4%) in real samples were obtained. For the first time, MOFs were utilized in the construction of QCM aptasensing platform, providing a promising application way of MOFs in the QCM sensing.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Lanqing Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yuanyuan Ma
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China.
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
8
|
Fan Y, Guo Y, Shi S, Ma J. An electrochemical immunosensor based on reduced graphene oxide/multiwalled carbon nanotubes/thionine/gold nanoparticle nanocomposites for the sensitive testing of follicle-stimulating hormone. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3821-3828. [PMID: 34373870 DOI: 10.1039/d1ay01032h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Follicle-Stimulating Hormone (FSH) is a kind of gonadotropin which can promote human reproduction and development. Abnormal FSH levels may lead to endocrine disorders and infertility. Sensitive determination of FSH is very significant for the clinical diagnosis of these diseases. Here, an electrochemical immunosensor based on a screen-printed electrode (SPE) was developed for the detection of FSH. Nanocomposites, compounded with reduced graphene oxide (rGO), multiwalled carbon nanotubes (MWCNTs), thionine (Thi) and gold nanoparticles (AuNPs), were used for increasing the specific surface area to adsorb molecules and amplify signals. The rGO/MWCNTs/Thi/AuNP nanocomposites, anti-FSH and BSA were successively assembled onto a SPE to fabricate the immunosensor. Electrochemical performance of the modified immunosensor was studied by differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FSH testing was based on the principle that the insulating FSH antigen-antibody immunocomplex could retard the electron transfer of Thi which led to the decrease of the DPV current response. Under optimum conditions, the rGO/MWCNTs/Thi/AuNP modified immunosensor exhibited high sensitivity and accuracy for the determination of FSH in a linear range from 1 mIU mL-1 to 250 mIU mL-1, and the detection limit was 0.05 mIU mL-1 at a signal-to-noise ratio of 3. The immunosensor was successfully applied for the determination of quality serum samples with a recovery of 94.0-109.8%. The electrochemical immunosensor could be utilized for testing other gonadotropins.
Collapse
Affiliation(s)
- Yan Fan
- Intelligence and Information Engineering College, Tangshan University, Tangshan 063000, China.
- Key Lab of Intelligent Data Information Processing and Control of Hebei Province, Tangshan University, Tangshan 063000, China
- Key Lab of Intelligent Motion Control System of Tangshan City, Tangshan University, Tangshan 063000, China
| | - Yaohua Guo
- Intelligence and Information Engineering College, Tangshan University, Tangshan 063000, China.
- Key Lab of Intelligent Data Information Processing and Control of Hebei Province, Tangshan University, Tangshan 063000, China
- Key Lab of Intelligent Motion Control System of Tangshan City, Tangshan University, Tangshan 063000, China
| | - Shengyu Shi
- General Cargo Branch of Qinhuangdao Port Company Limited, Qinhuangdao 066000, China
| | - Junshuang Ma
- Intelligence and Information Engineering College, Tangshan University, Tangshan 063000, China.
- Key Lab of Intelligent Data Information Processing and Control of Hebei Province, Tangshan University, Tangshan 063000, China
- Key Lab of Intelligent Motion Control System of Tangshan City, Tangshan University, Tangshan 063000, China
| |
Collapse
|
9
|
Zhang T, Zhang L, Liu JX, Wang JP, Wu NP. Development of a molecularly imprinted microspheres-based microplate fluorescence method for detection of amantadine and rimantadine in chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1136-1147. [PMID: 33989121 DOI: 10.1080/19440049.2021.1914868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, molecularly imprinted microspheres of a type capable of recognising amantadine and rimantadine were first synthesised, and three fluorescent tracers based on dansyl chloride, fluorescein isothiocyanate and 5-carboxytetramethylrhodamine were also synthesised. These reagents were used to develop and optimise a direct competitive fluorescence method on conventional 96-well microplate for detection of the two analytes. Results showed that this method achieved simple operation procedure, rapid assay process (30 min), high sensitivity (limits of detection 0.04-0.05 ng mL-1) and acceptable recycle performance (five times). After optimisation of several parameters, this method was used to detect amantadine and rimantadine in chicken muscle samples. Their recoveries from standards fortified blank samples were in the range of 62.3-93.7%. The analysis results for some real chicken samples were consistent with a confirmatory LC-MS/MS method. Therefore, this method could be used as a rapid, simple and accurate tool for routine screening the residues of amantadine and rimantadine in a large number of chicken muscle samples.
Collapse
Affiliation(s)
- Teng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lei Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ju Xiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ning Peng Wu
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou Henan, China
| |
Collapse
|
10
|
Zhao L. Horseradish Peroxidase Labelled-Sandwich Electrochemical Sensor Based on Ionic Liquid-Gold Nanoparticles for Lactobacillus brevis. MICROMACHINES 2021; 12:75. [PMID: 33445448 PMCID: PMC7827081 DOI: 10.3390/mi12010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Lactobacillus brevis is the most common bacteria that causes beer spoilage. In this work, a novel electrochemical immunosensor was fabricated for ultra-sensitive determination of L. brevis. Gold nanoparticles (AuNPs) were firstly electro-deposited on the electrode surface for enhancing the electro-conductivity and specific surface area. Ionic liquid was used for improving the immobilization performance of the immunosensor. After optimization, a linear regression equation can be observed between the ∆current and concentration of L. brevis from 104 CFU/mL to 109 CFU/mL. The limit of detection can be estimated to be 103 CFU/mL.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Simultaneous determination of five antiviral drug residues and stability studies in honey using a two-step fraction capture coupled to liquid chromatography tandem mass spectrometry. J Chromatogr A 2021; 1638:461890. [PMID: 33465584 DOI: 10.1016/j.chroma.2021.461890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/24/2022]
Abstract
An effective sample pretreatment method followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) was first developed for simultaneous determination of five antiviral drug residues including ribavirin, moroxydine, amantadine, rimantadine and memantine in honey. To adsorb analytes with different binding properties and overcome the interference of sugars and uridine as endogenous ribavirin structural analogs in honey, the target drugs were extracted with 1% formic acid and then purified by a phenylboronic acid (PBA) solid phase extraction cartridge using two-step fraction capture prior to LC-MS/MS analysis. This method was validated by analyzing honey samples from nine floral origins including miscellaneous flowers, citrus, vitex, rape, acacia, sunflower, linden, buckwheat and jujube spiking at multiple levels, and the recoveries ranged from 82.46% to 116.34%, with relative standard deviations (RSDs) less than 14.58%. The limits of detection (LODs) and limits of quantitation (LOQs) of moroxydine, ribavirin, amantadine, rimantadine, and memantine were 0.1-2 µg/kg and 0.2-5 µg/kg, respectively. Depletion experiments of five antiviral drugs in honey at different storage and process temperatures demonstrated that moroxydine can potentially be used as a drug to cure sacbrood disease in honeybees.
Collapse
|
12
|
Lowdon JW, Diliën H, Singla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K. MIPs for commercial application in low-cost sensors and assays - An overview of the current status quo. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128973. [PMID: 33012991 PMCID: PMC7525251 DOI: 10.1016/j.snb.2020.128973] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.
Collapse
Affiliation(s)
- Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Pankaj Singla
- Department of Chemistry, UGC-Centre for advanced studies-1, Guru Nanak Dev University, Amritsar 143005, India
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
13
|
Yang JC, Park J. Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization. Polymers (Basel) 2020; 12:E1892. [PMID: 32842670 PMCID: PMC7564607 DOI: 10.3390/polym12091892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
This study successfully fabricated BPA-imprinted poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) (poly(4-VP-co-EGDMA)) quartz crystal microbalance (MIP-QCM) sensors on a silica skeleton surface and gold pinholes of silica inverse opal through surface-initiated atom transfer radical polymerization (SI-ATRP). The sensing features of the two MIP films on the structured silica surface and nano-scale local gold surface were investigated by measuring the resonant frequency change (∆f) in QCM sensors. The ∆f values for the p-MIP (MIP on gold pinholes) and s-MIP films (MIP on silica skeleton surface) were obtained with the ∆f value of -199 ± 4.9 Hz and -376 ± 19.1 Hz, respectively, whereas for p-/s-NIP films, the ∆f values were observed to be -115 ± 19.2 Hz and -174 ± 5.8 Hz by the influence of non-specific adsorption on the surface of the films. Additionally, the imprinting factor (IF) appeared to be 1.72 for p-MIP film and 2.15 for s-MIP film, and the limits of quantitation (LOQ) and detection (LOD) were 54.924 and 18.125 nM (p-MIP film) and 38.419 and 12.678 nM (s-MIP film), respectively. Using the Freundlich isotherm model, the binding affinity of the BPA-imprinted films was evaluated. This was measured in an aqueous solution of BPA whose concentration ranged between 45 and 225 nM. It was found that the p-MIP film (m = 0.39) was relatively more heterogeneous than the s-MIP film (m = 0.33), both of which were obtained from the slope of the linear regressions. Finally, the selectivity of the MIP-QCM sensors for BPA detection was determined by measuring the effect of other analogous chemicals, such as bisphenol F (BPF), bisphenol AP (BPAP), and bisphenol B (BPB), in aqueous solutions. The selectivity coefficients (k*) of the two MIP films had ~1.9 for the p-MIP and ~2.3 for the s-MIP films, respectively. The results reveal that, with respect to signal amplification of the QCM sensors, the s-MIP film has better sensing features and faster detection responses than the p-MIP film.
Collapse
Affiliation(s)
- Jin Chul Yang
- School of Applied Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Jinyoung Park
- School of Applied Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| |
Collapse
|
14
|
Ibarra IS, Miranda JM, Pérez-Silva I, Jardinez C, Islas G. Sample treatment based on molecularly imprinted polymers for the analysis of veterinary drugs in food samples: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2958-2977. [PMID: 32930156 DOI: 10.1039/d0ay00533a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of veterinary drugs in medical treatments and in the livestock industry is a recurrent practice. When applied in subtherapeutic doses over prolonged times, they can also act as growth promoters. However, residues of these substances in foods present a risk to human health. Their analysis is thus important and can help guarantee consumer safety. The critical point in each analytical technique is the sample treatment and the analytical matrix complexity. The present manuscript summarizes the development, type of synthesis, characterization, and application of molecularly imprinted polymers in the separation, identification, and quantification techniques for the determination of veterinary drug residues in food samples in extraction, clean-up, isolation, and pre-concentration systems. Synthesized sorbents with specific recognition properties improve the interactions between the analytes and the polymeric sorbents, providing better analysis conditions and advantages in comparison with commercial sorbents in terms of high selectivity, analytical sensitivity, easy performance, and low cost analysis.
Collapse
Affiliation(s)
- I S Ibarra
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - J M Miranda
- Departamento Quimica Analítica, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Pabellon 4 planta bajo, Campus Universitario s/n, 27002 Lugo, Spain
| | - I Pérez-Silva
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - C Jardinez
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - G Islas
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
- Universidad Politécnica de Francisco I. Madero, Área de Ingeniería Agroindustrial, Domicilio Conocido, 42640 Tepatepec, Hgo, Mexico
| |
Collapse
|
15
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
16
|
Bakhshpour M, Piskin AK, Yavuz H, Denizli A. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta 2019; 204:840-845. [DOI: 10.1016/j.talanta.2019.06.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/19/2023]
|
17
|
Yun Y, Pan M, Wang L, Li S, Wang Y, Gu Y, Yang J, Wang S. Fabrication and evaluation of a label-free piezoelectric immunosensor for sensitive and selective detection of amantadine in foods of animal origin. Anal Bioanal Chem 2019; 411:5745-5753. [PMID: 31243479 DOI: 10.1007/s00216-019-01954-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
A label-free piezoelectric immunosensor was fabricated and applied to the detection of the antiviral drug amantadine (AM) in foods of animal origin. Experimental parameters associated with the fabrication and measurement process were optimized and are discussed here in detail. The proposed piezoelectric sensor is based on an immunosuppression format and uses a portable quartz crystal microbalance (QCM) chip. It was found to provide a good response to AM, with a sensitivity and limit of detection (LOD) of 33.9 and 1.3 ng mL-1, respectively, as well as low cross-reactivity (CR, < 0.01%) with AM analogues. The immunosensor was further applied to quantify AM at three levels in spiked samples of typical foods of animal origin, and yielded recoveries of 83.2-93.4% and standard deviations (SDs, n = 3) of 2.4-4.5%, which are comparable to the results (recoveries: 82.6-94.3%; SDs: 1.7-4.2%) obtained using a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. Furthermore, the piezoelectric immunosensing chip can be regenerated multiple (at least 20) times with low signal attenuation (about 10%). A sample analysis can be completed within 50 min (sample pretreatment: about 40 min, QCM measurement: 5 min). These results demonstrate that the developed piezoelectric immunosensor provides a sensitive, accurate, portable, and low-cost analytical strategy for the antiviral drug AM in foods of animal origin, and this label-free detection method could also be applied to analyze other targets in the field of food safety. Graphical abstract.
Collapse
Affiliation(s)
- Yaguang Yun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China.,Tianjin University of Science and Technology, Tianjin, 300457, China.,Baotou Light Industry Vocational Technical College, Baotou, 014035, China
| | - Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China. .,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China. .,Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Lulu Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China.,Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shijie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China.,Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yanan Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China.,Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ying Gu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China.,Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingying Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China.,Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China. .,State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Safety Control Technology in Food Processing, Tianjin, 300457, China. .,Tianjin University of Science and Technology, Tianjin, 300457, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
18
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
19
|
Pan M, Yang J, Li S, Wen W, Wang J, Ding Y, Wang S. A Reproducible Surface Plasmon Resonance Immunochip for the Label-Free Detection of Amantadine in Animal-Derived Foods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-01424-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Xu X, Zhang Y, Wang B, Luo L, Xu Z, Tian X. A novel surface plasmon resonance sensor based on a functionalized graphene oxide/molecular-imprinted polymer composite for chiral recognition of l-tryptophan. RSC Adv 2018; 8:32538-32544. [PMID: 35547682 PMCID: PMC9086263 DOI: 10.1039/c8ra06295a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel surface plasmon resonance (SPR) sensor based on a functionalized graphene oxide (GO)/molecular-imprinted polymer composite was developed for the chiral recognition of l-tryptophan (l-Trp). The composite's recognition element was prepared via a facile and green synthesis approach using polydopamine as both a reducer of GO and a functional monomer as well as a cross-linker for molecular imprinting. The composite was characterized via Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. After attaching the composite onto the gold surface of an SPR chip, the sensor was characterized using contact-angle measurements. The sensor exhibited excellent selectivity and chiral recognition for the template (i.e., l-Trp). Density functional theory computations showed that the difference in hydrogen bonding between the composite element and l-Trp and d-Trp played an important role in chiral recognition.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Bingfeng Wang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University Guangzhou 510642 PR China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| |
Collapse
|
21
|
Pan M, Li R, Xu L, Yang J, Cui X, Wang S. Reproducible Molecularly Imprinted Piezoelectric Sensor for Accurate and Sensitive Detection of Ractopamine in Swine and Feed Products. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1870. [PMID: 29880768 PMCID: PMC6022169 DOI: 10.3390/s18061870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
This paper describes the development of a reproducible molecularly imprinted piezoelectric sensor for the accurate and sensitive detection of ractopamine (RAC) in swine and feed products. The synthesized molecularly imprinted polymer (MIP) was directly immobilized on the surface of a quartz crystal microbalance (QCM) Au chip as the recognition element. The experimental parameters in the fabrication, measurement and regeneration process were evaluated in detail to produce an MIP-based piezoelectric sensor with high sensing capability. The developed piezoelectric sensor was verified to perform favorably in the RAC analysis of swine and feed products, with acceptable accuracy (recovery: 75.9⁻93.3%), precision [relative standard deviation (n = 3): 2.3⁻6.4%], and sensitivity [limit of detection: 0.46 ng g-1 (swine) and 0.38 ng g-1 (feed)]. This portable MIP-based chip for the piezoelectric sensing of RAC could be reused for at least 30 cycles and easily stored for a long time. These results demonstrated that the developed MIP-based piezoelectric sensor presents an accurate, sensitive and cost-effective method for the quantitative detection of RAC in complex samples. This research offers a promising strategy for the development of novel effective devices used for use in food safety analysis.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Rui Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Leling Xu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jingying Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoyuan Cui
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|