1
|
Chen S, Duan X, Liu C, Liu S, Li P, Su D, Sun X, Guo Y, Chen W, Wang Z. La-Ce-MOF nanocomposite coated quartz crystal microbalance gas sensor for the detection of amine gases and formaldehyde. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133672. [PMID: 38325099 DOI: 10.1016/j.jhazmat.2024.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Trimethylamine (TMA), Dimethylamine (DMA), Ammonia (NH3) and formaldehyde (HCHO) are typical volatile gases and able to cause great damage to the environment and the human body, and they may appear along in some particular cases such as marine meat spoilage. However, gas sensors can detect all the 4 hazardous gases simultaneously have rarely been reported. In this study, a quartz crystal microbalance (QCM) gas sensor modified with La-Ce-MOF was employed for the detection of 4 target gases (TMA, DMA, NH3 and HCHO). The sensor exhibited excellent stability (63 days), selectivity (3.51 Hz/(μmoL/L) for TMA, 4.19 Hz/(μmoL/L) for DMA, 3.14·Hz/(μmoL/L) for NH3 and 3.08·Hz/(μmoL/L) for HCHO), robustness and sensitivity towards target gases detection. Vienna Ab-initio Simulation Package calculations showed that this superior sensing performance was attributed to the preferential adsorption of target gas molecules onto the nanomicrospheres via hydrogen bond. The adsorption energy was - 0.4329 eV for TMA, - 0.5204 eV for DMA, - 0.6823 eV for NH3 and - 0.7576 eV for HCHO, all of which are physically adsorbed. In the detection of hazardous gases, sensor surface active sites were often susceptible to environmental factors and interfering substances, leading to a decrease in the sensitivity of the gas sensor, which in turn affects the signal accuracy in practical applications. This issue has been effectively addressed and the sensor has been implemented for the assessment of the salmon meat freshness, which may contribute to further advancements in the development of QCM gas sensors for monitoring food quality, human beings health and environment safety.
Collapse
Affiliation(s)
- Shihao Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xiaoyi Duan
- School of Chemical and Chemical Engineering, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Cong Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Suqi Liu
- School of Food and Health, Zhejiang A&F University, No. 666 Wusu street, Hangzhou 311300, China
| | - Pei Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Dianbin Su
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Wei Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Zhenhe Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
2
|
Alanazi N, Almutairi M, Alodhayb AN. A Review of Quartz Crystal Microbalance for Chemical and Biological Sensing Applications. SENSING AND IMAGING 2023; 24:10. [PMID: 36908332 PMCID: PMC9985094 DOI: 10.1007/s11220-023-00413-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Humans are fundamentally interested in monitoring and understanding interactions that occur in and around our bodies. Biological interactions within the body determine our physical condition and can be used to improve medical treatments and develop new drugs. Daily life involves contact with numerous chemicals, ranging from household elements, naturally occurring scents from common plants and animals, and industrial agents. Many chemicals cause adverse health and environmental effects and require regulation to prevent pollution. Chemical detection is critically important for food and environmental quality control efforts, medical diagnostics, and detection of explosives. Thus, sensitive devices are needed for detecting and discriminating chemical and biological samples. Compared to other sensing devices, the Quartz Crystal Microbalance (QCM) is well-established and has been considered and sufficiently sensitive for detecting molecules, chemicals, polymers, and biological assemblies. Due to its simplicity and low cost, the QCM sensor has potential applications in analytical chemistry, surface chemistry, biochemistry, environmental science, and other disciplines. QCM detection measures resonate frequency changes generated by the quartz crystal sensor when covered with a thin film or liquid. The quartz crystal is sandwiched between two metal (typically gold) electrodes. Functionalizing the electrode's surface further enhances frequency change detection through to interactions between the sensor and the targeted material. These sensors are sensitive to high frequencies and can recognize ultrasmall masses. This review will cover advancements in QCM sensor technologies, highlighting in-sensor and real-time analysis. QCM-based sensor function is dictated by the coating material. We present various high-sensitivity coating techniques that use this novel sensor design. Then, we briefly review available measurement parameters and technological interventions that will inform future QCM research. Lastly, we examine QCM's theory and application to enhance our understanding of relevant electrical components and concepts.
Collapse
Affiliation(s)
- Nadyah Alanazi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Maram Almutairi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
3
|
Ayad MM, Abdelghafar ME, Torad NL, Yamauchi Y, Amer WA. Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor. CHEMOSPHERE 2023; 312:137031. [PMID: 36397304 DOI: 10.1016/j.chemosphere.2022.137031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the present study, an eco-friendly method for the preparation of carbon quantum dots (CQDs) is demonstrated using hydrothermal treatment of laurel leaves. The optical and structural characteristics of the prepared CQDs are investigated using transmission electron microscopy (TEM), X-ray photoelectron (XPS), fluorescent and UV-visible spectroscopies, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The quartz crystal microbalance (QCM) sensor designed and modified with CQDs is capable of detecting formaldehyde vapors in the presence of other interfering chemical-vapor analytes. The changes in the frequency of the QCM sensor are linearly correlated with the injected formaldehyde concentrations. The sensing properties of formaldehyde, including sensitivity and reversibility, are investigated. Detection of formaldehyde in the presence of humidity is carefully discussed for home or workplace room environment use. The adsorption kinetics of various VOCs vapors are also calculated and discussed.
Collapse
Affiliation(s)
- Mohamad M Ayad
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Mona E Abdelghafar
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nagy L Torad
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
| | - Wael A Amer
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain.
| |
Collapse
|
4
|
Song J, Lin X, Ee LY, Li SFY, Huang M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. ADVANCED FIBER MATERIALS 2022; 5:429-460. [PMID: 36530770 PMCID: PMC9734373 DOI: 10.1007/s42765-022-00237-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 05/26/2023]
Abstract
Rapid industrialization is accompanied by the deterioration of the natural environment. The deepening crisis associated with the ecological environment has garnered widespread attention toward strengthening environmental monitoring and protection. Environmental sensors are one of the key technologies for environmental monitoring, ultimately enabling environmental protection. In recent decades, micro/nanomaterials have been widely studied and applied in environmental sensing owing to their unique dimensional properties. Electrospinning has been developed and adopted as a facile, quick, and effective technology to produce continuous micro- and nanofiber materials. The technology has advanced rapidly and become one of the hotspots in the field of nanomaterials research. Environmental sensors made from electrospun nanofibers possess many advantages, such as having a porous structure and high specific surface area, which effectively improve their performance in environmental sensing. Furthermore, by introducing functional nanomaterials (carbon nanotubes, metal oxides, conjugated polymers, etc.) into electrospun fibers, synergistic effects between different materials can be utilized to improve the catalytic activity and sensitivity of the sensors. In this review, we aimed to outline the progress of research over the past decade on electrospinning nanofibers with different morphologies and functional characteristics in environmental sensors.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Xuanhao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- National University of Singapore Environmental Research Institute, T Lab Bldg, 5A Engineering Drive 1, Singapore, 117411 Singapore
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620 People’s Republic of China
| |
Collapse
|
5
|
Liu LS, Kim JM, Kim WS. In situ discrimination of polymorphs and phase transformation of sulfamerazine using quartz crystal microbalance. Anal Chim Acta 2022; 1221:340137. [DOI: 10.1016/j.aca.2022.340137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 11/01/2022]
|
6
|
Su H, Li H, Lin H, Shi X, Du Y, Luo Y, Deng H. Highly sensitive formaldehyde sensors based on CuO/ZnO composite nanofibrous mats using porous cellulose acetate fibers as templates. Int J Biol Macromol 2022; 206:653-660. [PMID: 35240217 DOI: 10.1016/j.ijbiomac.2022.02.167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
An innovative formaldehyde sensor based on CuO/ZnO composite nanofibrous mats (C-NFMs) coated quartz crystal microbalance (QCM), which is capable of stable determination of formaldehyde gas at ambient temperatures sensitively and selectively, has been successfully fabricated. Triaxial and highly porous C-NFMs with high surface area (126.53 m2 g-1) were synthesized by electrospinning a sol-gel cellulose acetate (CA)/CuAc2/ZnAc2 complex solution and following by calcination process. Benefiting from the unique heterojunction structure, immense pore interconnectivity and large surface area of C-NFMs, the as-developed QCM sensors exhibited an extremely low limit of detection (LOD) down to 26 ppb and a limit of quantification value equals to 87 ppb. Besides, the C-NFMs coated QCM sensors also demonstrated short response times (80s), the long-term stability during 3 weeks as well as good selectivity to formaldehyde over diverse volatile organic compounds. The sorption equilibrium in the adsorption process of QCM coated sensors was well met with the Freundlich model, which certified the heterogeneous adsorption between formaldehyde gas and C-NFMs.
Collapse
Affiliation(s)
- Huiyu Su
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hao Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Heng Lin
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yan Luo
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518000, China.
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518063, China.
| |
Collapse
|
7
|
A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit. ELECTRONICS 2022. [DOI: 10.3390/electronics11030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument.
Collapse
|
8
|
Febrina M, Rianjanu A, Rajak A, Mukti RR, Djamal M. Electrospun Polyacrylonitrile Nanofibers Mixed with Citric Acid as a Quartz Crystal Microbalance Ammonia Vapor Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202103615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Melany Febrina
- Department of Physics Institut Teknologi Sumatera Terusan Ryacudu, Way Hui, Jati Agung Lampung 35365 Indonesia
- Research and Innovation Center for Advanced Materials Institut Teknologi Sumatera Terusan Ryacudu, Way Hui, Jati Agung Lampung 35365 Indonesia
| | - Aditya Rianjanu
- Department of Materials Engineering Institut Teknologi Sumatera Terusan Ryacudu, Way Hui, Jati Agung Lampung 35365 Indonesia
- Research and Innovation Center for Advanced Materials Institut Teknologi Sumatera Terusan Ryacudu, Way Hui, Jati Agung Lampung 35365 Indonesia
| | - Abdul Rajak
- Department of Physics Institut Teknologi Sumatera Terusan Ryacudu, Way Hui, Jati Agung Lampung 35365 Indonesia
| | - Rino R. Mukti
- Division of Inorganic and Physical Chemistry, Research Center for Nanoscience and Nanotechnology Center for Catalysis Reaction and Engineering Institut Teknologi Bandung Bandung 40132 Indonesia
- Research and Innovation Center for Advanced Materials Institut Teknologi Sumatera Terusan Ryacudu, Way Hui, Jati Agung Lampung 35365 Indonesia
| | - Mitra Djamal
- Department of Physics Institut Teknologi Sumatera Terusan Ryacudu, Way Hui, Jati Agung Lampung 35365 Indonesia
| |
Collapse
|
9
|
Adsorption Followed by Plasma Assisted Catalytic Conversion of Toluene into CO2 on Hopcalite in an Air Stream. Catalysts 2021. [DOI: 10.3390/catal11070845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The abatement of toluene was studied in a sequential adsorption-plasma catalysis (APC) process. Within this process, Hopcalite was used as bifunctional material: as adsorbent (storage stage) and as catalyst via the oxidation of adsorbed toluene (discharge stage). It was observed that the desorption and oxidation activity of the adsorbed toluene was significantly affected the process variables. In addition, the adsorption time influenced the CO2 selectivity and CO2 yield by changing the interaction between the catalyst and the plasma generated species. At least four APC sequences were performed for each examined condition suggesting that Hopcalite is very stable under plasma exposure during all the sequences. Consequently, these results could contribute to advance the plasma–catalyst system with an optimal VOC oxidation efficiency. The catalytic activity, amount of toluene adsorbed, amount of toluene desorbed and product formation have been quantified by FT-IR. Moreover, the catalyst was characterized by XRD, H2-TPR, N2 adsorption–desorption analysis and XPS. Hopcalite shows a good CO2 selectivity and CO2 yield when the APC process is performed with an adsorption time of 20 min and a plasma treatment with a discharge power of 46 W which leads to a low energy cost of 11.6 kWh·m−3 and energy yields of toluene and CO2 of 0.18 (±0.01) g·kWh−1 and 0.48 (±0.06) g·kWh−1 respectively.
Collapse
|
10
|
Wang S, Liu G, Yang B, Zhang Z, Hu D, Wu C, Qin Y, Dou Q, Dai Q, Hu W. Low-fouling CNT-PEG-hydrogel coated quartz crystal microbalance sensor for saliva glucose detection. RSC Adv 2021; 11:22556-22564. [PMID: 35480473 PMCID: PMC9034414 DOI: 10.1039/d1ra02841c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Saliva glucose detection based on a quartz crystal microbalance (QCM) sensor has emerged as a promising tool and a non-invasive diagnostic technique for diabetes. However, the low glucose concentration and strong protein interference in the saliva hinder the QCM sensors from practical applications. In this study, we present a robust and simple anti-fouling CNT-PEG-hydrogel film-coated QCM sensor for the detection of saliva glucose with high sensitivity. The CNT-PEG-hydrogel film consists of two layers; the bottom base PBA-hydrogel film is designed to recognize the glucose while the top CNT-PEG layer is used to restrict protein adsorption and improve the biocompatibility. Our results show that this CNT-PEG-hydrogel film exhibited a 10-fold enhancement on the detection limit compared to the PBA-hydrogel. Meanwhile, the adsorption of proteins on the surface of the CNT-PEG-hydrogel film, including bovine serum albumin (BSA), mucin (MUC), and fibrinogen (FIB), were reduced by 99.1%, 77.8%, and 83.7%, respectively. The CNT-PEG-hydrogel film could detect the typical saliva glucose level (0-50 mg L-1) in 10% saliva with a good responsivity. To sum up, this new tool with low-fouling film featuring high stability, specificity, and selectivity holds great potential for non-invasive monitoring of saliva glucose in human physiological levels.
Collapse
Affiliation(s)
- Shiwen Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University Tianjin 300072 China
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Guanjiang Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Bei Yang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Zifeng Zhang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Debo Hu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Chenchen Wu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Yaling Qin
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Qian Dou
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Qing Dai
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-010-82545720
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University Tianjin 300072 China
| |
Collapse
|
11
|
Feng L, Feng L, Li Q, Cui J, Guo J. Sensitive Formaldehyde Detection with QCM Sensor Based on PAAm/MWCNTs and PVAm/MWCNTs. ACS OMEGA 2021; 6:14004-14014. [PMID: 34124425 PMCID: PMC8190811 DOI: 10.1021/acsomega.0c05987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/12/2021] [Indexed: 05/30/2023]
Abstract
Two formaldehyde detection methods are proposed by applying composite film quartz crystal microbalance (QCM) sensors. QCM sensor coated with PAAm/MWCNTs and PVAm/MWCNTs shows excellent characteristics of lower limit and high sensitivity. The lower limit of PVAm/MWCNTs is 0.5 ppm, and its detection sensitivity is 0.74 ppm/Hz. Upon working at different concentrations of formaldehyde and fabricating in different proportions, the reuse performance, gas selectivity, and response at room temperature show contrasting results. The main advantages of the two sensors presented are fast reaction, low cost, and easy manufacture. Compared to other formaldehyde sensors based on QCM, the PAAm/MWCNT- and PVAm/MWCNT-coated QCM sensors are able to concurrently show excellent selectivity, reuse performance, and high sensitivity, which is of great significance to detect the environmental quality.
Collapse
Affiliation(s)
- Lihui Feng
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| | - Liying Feng
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| | - Qi Li
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
- Shenzhen
Mindray Bio-Medical Electronics Co., Ltd., 518057 Shenzhen, China
| | - Jianmin Cui
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| | - Junqiang Guo
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Julian T, Hidayat SN, Rianjanu A, Dharmawan AB, Wasisto HS, Triyana K. Intelligent Mobile Electronic Nose System Comprising a Hybrid Polymer-Functionalized Quartz Crystal Microbalance Sensor Array. ACS OMEGA 2020; 5:29492-29503. [PMID: 33225180 PMCID: PMC7676330 DOI: 10.1021/acsomega.0c04433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/01/2023]
Abstract
We devised a low-cost mobile electronic nose (e-nose) system using a quartz crystal microbalance (QCM) sensor array functionalized with various polymer-based thin active films (i.e., polyacrylonitrile, poly(vinylidene fluoride), poly(vinyl pyrrolidone), and poly(vinyl acetate)). It works based on the gravimetric detection principle, where the additional mass of the adsorbed molecules on the polymer surface can induce QCM resonance frequency shifts. To collect and process the obtained sensing data sets, a multichannel data acquisition (DAQ) circuitry was developed and calibrated using a function generator resulting in a device frequency resolution of 0.5 Hz. Four prepared QCM sensors demonstrated various sensitivity levels with high reproducibility and consistency under exposure to seven different volatile organic compounds (VOCs). Moreover, two types of machine learning algorithms (i.e., linear discriminant analysis and support vector machine models) were employed to differentiate and classify those tested analytes, in which classification accuracies of up to 98 and 99% could be obtained, respectively. This high-performance e-nose system is expected to be used as a versatile sensing platform for performing reliable qualitative and quantitative analyses in complex gaseous mixtures containing numerous VOCs for early disease diagnosis and environmental quality monitoring.
Collapse
Affiliation(s)
- Trisna Julian
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, PO Box BLS 21, Yogyakarta 55281, Indonesia
- PT.
Nanosense Instrument Indonesia, Umbulharjo, Yogyakarta 55167, Indonesia
| | - Shidiq Nur Hidayat
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, PO Box BLS 21, Yogyakarta 55281, Indonesia
- PT.
Nanosense Instrument Indonesia, Umbulharjo, Yogyakarta 55167, Indonesia
| | - Aditya Rianjanu
- Department
of Materials Engineering, Institut Teknologi
Sumatera, Terusan Ryacudu,
Way Hui, Jati Agung, Lampung 35365, Indonesia
- Research
and Innovation Center for Advanced Materials, Institut Teknologi Sumatera, Terusan
Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia
| | - Agus Budi Dharmawan
- Institute
of Semiconductor Technology (IHT), Technische
Universität Braunschweig, Hans-Sommer-Straße 66, Braunschweig 38106, Germany
- Laboratory
for Emerging Nanometrology (LENA), Technische
Universität Braunschweig, Langer Kamp 6, Braunschweig 38106, Germany
- Faculty of
Information Technology, Universitas Tarumanagara, Jl. Letjen S. Parman No. 1, Jakarta 11440, Indonesia
| | - Hutomo Suryo Wasisto
- Institute
of Semiconductor Technology (IHT), Technische
Universität Braunschweig, Hans-Sommer-Straße 66, Braunschweig 38106, Germany
- Laboratory
for Emerging Nanometrology (LENA), Technische
Universität Braunschweig, Langer Kamp 6, Braunschweig 38106, Germany
| | - Kuwat Triyana
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, PO Box BLS 21, Yogyakarta 55281, Indonesia
- Institute
of Halal Industry and System (IHIS), Universitas
Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
13
|
Bano K, Bajwa SZ, Bassous NJ, Webster TJ, Shaheen A, Taj A, Hameed S, Tehseen B, Dai Z, Iqbal MZ, Khan WS. Development of biocompatible 1D CuO nanoneedles and their potential for sensitive, mass-based detection of anti-tuberculosis drugs. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01003-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|