1
|
Farazin A, Mohammadimehr M, Ghasemi AH, Naeimi H. Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous Ag 2O/SiO 2 and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film. RSC Adv 2021; 11:32775-32791. [PMID: 35493577 PMCID: PMC9042220 DOI: 10.1039/d1ra05153a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most significant factors affecting the rapid and effective healing of wounds is the application of appropriate wound dressings. In the present study, novel antibacterial wound dressings are fabricated that consist of Chitosan (CS)/Polyvinyl alcohol (PVA)/Sodium Alginate (SA), which are all biocompatible, functionalized with mesoporous Ag2O/SiO2 and curcumin nanoparticles as reinforcements. In this research nanocomposites are fabricated (0 wt%, 5 wt%, 10 wt%, 15 wt%, and 20 wt% of Ag2O/SiO2). After the composition of nanocomposites using the cross-linked technique, Fourier Transform Infrared (FT-IR) spectroscopy is performed to confirm the functional groups that are added to the polymer at each step. X-ray diffraction (XRD) is done to show the crystallinity of Ag2O/SiO2. Field emission scanning electron microscopy (FE-SEM) studies are performed to demonstrate the morphology of the structure, Energy-dispersive X-ray spectroscopy (EDS) is done to examine the elements in the wound dressing and atomic force microscopy (AFM) study is performed to show surface roughness and pores. Then the nanocomposites with different weight percentages are cultured in three bacteria called Acinetobacter baumannii, Staphylococcus epidermidis, and Proteus mirabilis, all three of which cause skin infections. Finally, by performing the tensile test, the results related to the tensile strength of the wound dressings are examined. The results show that with the increase of Ag2O/SiO2, the mechanical properties, as well as the healing properties of the wound dressing, have increased significantly. Fabricating these nanocomposites helps a lot in treating skin infections.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan P.O. Box 87317-53153 Kashan Iran
| | - Mehdi Mohammadimehr
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan P.O. Box 87317-53153 Kashan Iran
| | - Amir Hossein Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-53153 Kashan Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-53153 Kashan Iran
| |
Collapse
|
2
|
Hubbard ATM, Mason J, Roberts P, Parry CM, Corless C, van Aartsen J, Howard A, Bulgasim I, Fraser AJ, Adams ER, Roberts AP, Edwards T. Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of bla TEM-1B. Nat Commun 2020; 11:4915. [PMID: 33004811 PMCID: PMC7530762 DOI: 10.1038/s41467-020-18668-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
A phenotype of Escherichia coli and Klebsiella pneumoniae, resistant to piperacillin/tazobactam (TZP) but susceptible to carbapenems and 3rd generation cephalosporins, has emerged. The resistance mechanism associated with this phenotype has been identified as hyperproduction of the β-lactamase TEM. However, the mechanism of hyperproduction due to gene amplification is not well understood. Here, we report a mechanism of gene amplification due to a translocatable unit (TU) excising from an IS26-flanked pseudo-compound transposon, PTn6762, which harbours blaTEM-1B. The TU re-inserts into the chromosome adjacent to IS26 and forms a tandem array of TUs, which increases the copy number of blaTEM-1B, leading to TEM-1B hyperproduction and TZP resistance. Despite a significant increase in blaTEM-1B copy number, the TZP-resistant isolate does not incur a fitness cost compared to the TZP-susceptible ancestor. This mechanism of amplification of blaTEM-1B is an important consideration when using genomic data to predict susceptibility to TZP.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Chromosomes, Bacterial/genetics
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/genetics
- Drug Therapy, Combination/methods
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/isolation & purification
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/microbiology
- Escherichia coli Proteins/genetics
- Gene Amplification
- Gene Expression Regulation, Bacterial
- Genome, Bacterial/genetics
- Humans
- Microbial Sensitivity Tests
- Piperacillin/pharmacology
- Piperacillin/therapeutic use
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- Tazobactam/pharmacology
- Tazobactam/therapeutic use
- Whole Genome Sequencing
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Alasdair T M Hubbard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jenifer Mason
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Paul Roberts
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Building MA, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Christopher M Parry
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 7BE, UK
- Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- School of Tropical Medicine and Global Health, University of Nagasaki, Nagasaki, Japan
| | - Caroline Corless
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Jon van Aartsen
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Alex Howard
- Liverpool University Hospital Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Issra Bulgasim
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Alice J Fraser
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Emily R Adams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Thomas Edwards
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
4
|
Sharma S, Sharma S, Singh PP, Khan IA. Potential Inhibitors Against NDM-1 Type Metallo-β-Lactamases: An Overview. Microb Drug Resist 2020; 26:1568-1588. [PMID: 32486911 DOI: 10.1089/mdr.2019.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new member of the class metallo-β-lactamase (MBL), New Delhi metallo-beta-lactamase 1 (NDM-1) has emerged recently as a leading threat to the treatment of infections that have spread in all major Gram-negative pathogens. The enzyme inactivates antibiotics of the carbapenem family, which are a mainstay for the treatment of antibiotic-resistant bacterial infections. This review provides information about NDM-1 spatial structure, potential features of the active site, and its mechanism of action. It also enlists the inhibitors/compounds/drugs against NDM-1 in various development phases. Understanding their mode of inhibition and the structure-activity relationship would be beneficial for development, synthesis, and even increasing biological efficacy of inhibitors, making them more promising drug candidates.
Collapse
Affiliation(s)
- Smriti Sharma
- Clinical Microbiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Sumit Sharma
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Parvinder Pal Singh
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|
5
|
Lin Y, Chen Y, Li Q, Tian X, Chu J. Rational high-throughput screening system for high sophorolipids production in Candida bombicola by co-utilizing glycerol and glucose capacity. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0252-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Konaklieva MI. Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. SLAS DISCOVERY 2018; 24:419-439. [PMID: 30523713 DOI: 10.1177/2472555218812657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past century, a multitude of derivatives of structural scaffolds with established antimicrobial potential have been prepared and tested, and a variety of new scaffolds have emerged. The effectiveness of antibiotics, however, is in sharp decline because of the emergence of drug-resistant microorganisms. The prevalence of drug resistance, both in clinical and community settings, is a consequence of bacterial ingenuity in altering pathways and/or cell morphology, making it a persistent threat to human health. The fundamental ability of pathogens to survive in a multitude of habitats can be triggered by recognition of chemical signals that warn organisms of exposure to a potentially harmful environment. Host immune defenses, including reactive oxygen intermediates and antibacterial substances, are among the multitude of chemical signals that can subsequently trigger expression of phenotypes better adapted for survival in that hostile environment. Thus, resistance development appears to be unavoidable, which leads to the conclusion that developing an alternative perspective for treatment options is vital. This review will discuss emerging medicinal chemistry approaches for addressing the global multidrug resistance in the 21st century.
Collapse
|