1
|
Hou W, Hao X, Li J, Gou X, Guo H, Zhang Y, Deng H, Zhang W. Compacting hyaluronan into nanogels induces an enhanced macropinocytosis in MC38 cells. Int J Biol Macromol 2025; 310:143599. [PMID: 40306505 DOI: 10.1016/j.ijbiomac.2025.143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Hyaluronan (HA)-based drug delivery system including HA conjugates and nano-formulations have been intensively researched in various biomedical applications due to its excellent biocompatibility and unique biological characteristics. Currently most researches are exploring the targeted drug delivery enabled by HA receptors e.g. CD44-based cancer targeting, while the contribution of other cellular uptake pathways in HA-based delivery remains elusive especially for different HA carriers. Here, the cellular uptake of HA in linear form (HA conjugate) and nano-formulation (HA nanogels (NG)) were compared with a focus on macropinocytosis that is actively involved in nutrient scavenging for cancer cells. Considering the ease of fluorescence in evaluating cellular uptake, Rhodamine b (Rb) dye was employed as a model drug to prepare HA-Rb conjugate and HA/Rb NG. After a comprehensive physiochemical characterization, the cellular uptake of these two HA carriers were compared in MC38 cells with different transport inhibitors, HA synthesis inhibition and nutrient depletion. While macropinocytosis blockage inhibited HA/Rb NG uptake more than HA-Rb, enhancing macropinocytosis either by HA inhibition or serum starvation significantly increased HA/Rb NG uptake. These evidences clearly suggest macropinocytosis contributes differently to the cellular uptake of varied HA carriers, which provides new insights to engineer HA for different drug delivery purposes.
Collapse
Affiliation(s)
- Wei Hou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xinxin Hao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayi Li
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xiaorong Gou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hua Guo
- State Key Laboratory of Molecular Oncology and Department of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
2
|
Miwa S, Mizutani D, Kawano K, Matsuzaki K, Nagata Y, Tsubaki K, Takasu K, Takikawa H. Helicene-Fluorescein Hybrids: A Reversible Base-Triggered (Chir)optical Switch with Sign Inversion of Circularly Polarized Luminescence. Chemistry 2025; 31:e202500335. [PMID: 39887791 DOI: 10.1002/chem.202500335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Novel circularly-polarized-luminescence (CPL) materials were designed and synthesized by integrating the intrinsic chirality of helicene with the acid/base-responsive properties of fluorescein. The synthesized helicene-fluorescein hybrids exhibit reversible switching between blue fluorescence under neutral conditions and red fluorescence under basic conditions. Furthermore, these hybrid compounds demonstrate unique chiroptical switching behavior with a rare base-triggered CPL sign inversion, where (P)-isomers show a negative CPL signal around 450 nm under neutral conditions and a positive signal around 620 nm under basic conditions, with three-fold enhanced dissymmetry factors (|glum|) under basic conditions. The structural basis for this switching was elucidated through TD-DFT calculations, revealing distinct angles between magnetic and electric transition dipole moments in closed versus open forms. Live-cell imaging experiments using HeLa cells revealed that the hybrid compounds exhibit intracellular red emission with minimal cytotoxicity, thus promising potential as chiral fluorescent probes for biological applications.
Collapse
Affiliation(s)
- Sorachi Miwa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daichi Mizutani
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuuya Nagata
- Institute for Chemical Reaction Design and Discovery (WPIICReDD), Hokkaido University, Hokkaido Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Takikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Stachelek P, Serrano-Buitrago S, Maroto BL, Pal R, de la Moya S. Circularly Polarized Luminescence Bioimaging Using Chiral BODIPYs: A Model Scaffold for Advancing Unprecedented CPL Microscopy Using Small Full-Organic Probes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67246-67254. [PMID: 39586824 DOI: 10.1021/acsami.4c14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Unprecedented circularly polarized luminescence bioimaging (CPL-bioimaging) of live cells using small full-organic probes is first reported. These highly biocompatible and adaptable probes are pivotal to advance emerging CPL Laser-Scanning Confocal Microscopy (CPL-LSCM) as an undeniable tool to distinguish, monitor, and understand the role of chirality in the biological processes. The development of these probes was challenging due to the poor dichroic character associated with the involved CPL emissions. However, the known capability of the BODIPY dyes to be tuned to act as efficient fluorescence bioprobes, together with the capability of the BINOL-O-BODIPY scaffold to enable CPL, allowed the successful design of the first examples of this kind of CPL probes. Interestingly, the developed CPL probes were also multiphoton (MP) active, paving the way for the envisioned MP-CPL-bioimaging. The described full-organic CPL-probe scaffold, based on an optically and biologically tunable BODIPY core, which is chirally perturbed by an enantiopure BINOL moiety, represents, therefore, a simple and readily accessible structural design for advancing efficient CPL probes for bioimaging by CPL-LSCM.
Collapse
Affiliation(s)
- Patrycja Stachelek
- Department of Chemistry, Durham University, Stockton Road, Durham, Durham DH1 3LE, United Kingdom
| | - Sergio Serrano-Buitrago
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain
| | - Robert Pal
- Department of Chemistry, Durham University, Stockton Road, Durham, Durham DH1 3LE, United Kingdom
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain
| |
Collapse
|
5
|
Nielsen LG, Andersen HOB, Kenwright AM, Platas-Iglesias C, So Rensen TJ. Using Chiral Auxiliaries to Mimic the Effect of Chiral Media on the Structure of Lanthanide(III) Complexes Common in Bioimaging and Diagnostic MRI. Inorg Chem 2024; 63:7560-7570. [PMID: 38610098 DOI: 10.1021/acs.inorgchem.3c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
[Ln·DOTA]- complexes and systems derived therefrom are commonly used in MRI and optical bioimaging. These lanthanide(III) complexes are chiral, and, in solution, they are present in four forms, with two sets of enantiomers, with the ligand donors arranged in either a square antiprismatic, SAP, or twisted square antiprismatic geometry, TSAP. This complicated speciation is found in laboratory samples. To investigate speciation in biological media, when Ln·DOTA-like complexes interact with chiral biomolecules, six Eu·DOTA-monoamide complexes were prepared and investigated by using 1D and 2D 1H NMR. To emulate the chirality of biological media, the amide pendant arm was modified with one or two chiral centers. It is known that a chiral center on the DOTA scaffold significantly influences the properties of the system. Here, it was found that chirality much further away from the metal center changes the available conformational space and that both chiral centers and amide cis/trans isomerism may need to be considered─a fact that, for the optically enriched materials, led to the conclusion that eight chemically different forms may need to be considered, instead of the four forms necessary for DOTA. The results reported here clearly demonstrate the diverse speciation that must be considered when correlating an observation to a structure of a lanthanide(III) complex.
Collapse
Affiliation(s)
- Lea Gundorff Nielsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| | - Helene O B Andersen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| | - Alan M Kenwright
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | - Thomas Just So Rensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| |
Collapse
|
6
|
Wu T, Bouř P, Fujisawa T, Unno M. Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305521. [PMID: 37985561 PMCID: PMC10767399 DOI: 10.1002/advs.202305521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Indexed: 11/22/2023]
Abstract
Raman optical activity (ROA) is commonly measured with green light (532 nm) excitation. At this wavelength, however, Raman scattering of europium complexes is masked by circularly polarized luminescence (CPL). This can be avoided using near-infrared (near-IR, 785 nm) laser excitation, as demonstrated here by Raman and ROA spectra of three chiral europium complexes derived from camphor. Since luminescence is strongly suppressed, many vibrational bands can be detected. They carry a wealth of structural information about the ligand and the metal core, and can be interpreted based on density functional theory (DFT) simulations of the spectra. For example, jointly with ROA experimental data, the simulations make it possible to determine absolute configuration of chiral lanthanide compounds in solution.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo náměstí 2Prague166 10Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo náměstí 2Prague166 10Czech Republic
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied ChemistryFaculty of Science and EngineeringSaga UniversitySaga840‐8502Japan
| | - Masashi Unno
- Department of Chemistry and Applied ChemistryFaculty of Science and EngineeringSaga UniversitySaga840‐8502Japan
| |
Collapse
|
7
|
De Rosa DF, Starck M, Parker D, Pal R. Unlocking same-sign CPL: solvent effects on spectral form and racemisation kinetics in nine-coordinate chiral europium(III) complexes. Chemistry 2023:e202303227. [PMID: 38078726 DOI: 10.1002/chem.202303227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 12/22/2023]
Abstract
Understanding the factors that shape the circularly polarised luminescence (CPL) emission profiles of europium(III)-based CPL emitters to have specific sign properties, e. g. monosignate individual CPL transitions, is key to design novel complexes for applications ranging from advanced security inks to bio-probes for live cell imaging. In order to correlate structure and spectral characteristics, a photophysical and kinetic investigation has been conducted on a series of coordinatively saturated nine-coordinate europium(III) systems based on 1,4,7-triazacyclononane. We highlight that lanthanide emission is sensitive to changes in the ligand field by showing the linear dependence of total emission intensity ratios as a function of solvent polarity, for europium(III) complexes displaying an internal charge transfer (ICT) excited state. This sensitivity increases by a factor of 20 when studying changes in CPL spectra, rendering these complexes accurate probes of local polarity. Solvent polarity, solvent-specific effects, and the nature of the chromophores' coordinating donor atoms strongly influence the kinetic stability of europium(III) complexes with respect to enantiomer interconversion. Notably, we show that the choice of donor groups to coordinating to europium(III) and the nature and polarity of the solvent affects the rate of racemisation, leading to systems with very long half-lives at room temperature in non-polar media.
Collapse
Affiliation(s)
- Davide F De Rosa
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
- Current address: Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
8
|
Albano G, Taddeucci A, Pescitelli G, Di Bari L. Spatially Resolved Chiroptical Spectroscopies Emphasizing Recent Applications to Thin Films of Chiral Organic Dyes. Chemistry 2023; 29:e202301982. [PMID: 37515814 DOI: 10.1002/chem.202301982] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Instrumental techniques able to identify and structurally characterize the aggregation states in thin films of chiral organic π-conjugated materials, from the first-order supramolecular arrangement up to the microscopic and mesoscopic scale, are very helpful for clarifying structure-property relationships. Chiroptical imaging is currently gaining a central role, for its ability of mapping local supramolecular structures in thin films. The present review gives an overview of electronic circular dichroism imaging (ECDi), circularly polarized luminescence imaging (CPLi), and vibrational circular dichroism imaging (VCDi), with a focus on their applications on thin films of chiral organic dyes as case studies.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Diamond Light Source, Ltd., Chilton, Didcot, OX11 0DE, UK
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
9
|
De Rosa DF, Stachelek P, Black DJ, Pal R. Rapid handheld time-resolved circularly polarised luminescence photography camera for life and material sciences. Nat Commun 2023; 14:1537. [PMID: 36941271 PMCID: PMC10027819 DOI: 10.1038/s41467-023-37329-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Circularly polarised luminescence (CPL) is gaining a rapidly increasing following and finding new applications in both life and material sciences. Spurred by recent instrumental advancements, the development of CPL active chiral emitters is going through a renaissance, especially the design and synthesis of CPL active luminescent lanthanide complexes owing to their unique and robust photophysical properties. They possess superior circularly polarised brightness (CPB) and can encode vital chiral molecular fingerprints in their long-lived emission spectrum. However, their application as embedded CPL emitters in intelligent security inks has not yet been fully exploited. This major bottleneck is purely hardware related: there is currently no suitable compact CPL instrumentation available, and handheld CPL photography remains an uncharted territory. Here we present a solution: an all solid-state small footprint CPL camera with no moving parts to facilitate ad hoc time-resolved enantioselective differential chiral contrast (EDCC) based one-shot CPL photography (CPLP).
Collapse
Affiliation(s)
- Davide F De Rosa
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Patrycja Stachelek
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Dominic J Black
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
10
|
Choi JH, Fremy G, Charnay T, Fayad N, Pécaut J, Erbek S, Hildebrandt N, Martel-Frachet V, Grichine A, Sénèque O. Luminescent Peptide/Lanthanide(III) Complex Conjugates with Push–Pull Antennas: Application to One- and Two-Photon Microscopy Imaging. Inorg Chem 2022; 61:20674-20689. [DOI: 10.1021/acs.inorgchem.2c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ji-Hyung Choi
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| | - Guillaume Fremy
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
- Université Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Thibault Charnay
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| | - Nour Fayad
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, Mont-Saint-Aignan Cedex 76821, France
| | - Jacques Pécaut
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38000, France
| | - Sule Erbek
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 Rue Ferrus, Paris 75014, France
| | - Niko Hildebrandt
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, Mont-Saint-Aignan Cedex 76821, France
| | - Véronique Martel-Frachet
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 Rue Ferrus, Paris 75014, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
| | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| |
Collapse
|
11
|
Foley AR, Raskatov J. AN ENANTIOMERIC FRAGMENT PAIR (EFP) APPROACH FOR THE STUDY OF CELLULAR UPTAKE OF INTRINSICALLY DISORDERED PROTEINS. Chembiochem 2022; 23:e202200146. [PMID: 35417609 DOI: 10.1002/cbic.202200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Indexed: 11/10/2022]
Abstract
The study of intrinsically disordered and amyloidogenic proteins poses a major challenge to researchers: the propensity of the system to aggregate and to form amyloid fibrils and deposits . This intrinsic nature limits the way amyloids can be studied and increases the level of complexity of the techniques needed to study the system of interest. Recent reports suggest that cellular recognition and internalization of pre-fibrillary species of amyloidogenic peptides and proteins may initiate some of its toxic actions. Therefore, developing novels tools to facilitate the understanding and determination of the interactions between intrinsically disordered proteins and the cellular membrane is becoming increasingly valuable. Here, we present and propose an approach for the study of the interactions of intrinsically disordered proteins with the cellular surface based on the use of enantiomeric fragment pairs (EFPs). By following a stepwise methodology in which the amyloidogenic peptide or protein is fragmented into specific segments, we show how this approach can be exploited to differentiate between different types of cellular uptake, to determine the degree of receptor-mediated cellular internalization of intrinsically disordered peptides and proteins, and to pinpoint the specific regions within the amino acid sequence responsible for the cellular recognition. Adopting this approach overcomes aggregation-related challenges and offers a particularly well-suited platform for the elucidation of receptor-intermediated recognition, uptake, and toxicity.
Collapse
Affiliation(s)
| | - Jevgenij Raskatov
- UCSC, Chemistry and Biochemistry, 1156 High Street, 95064, Santa Cruz, UNITED STATES
| |
Collapse
|
12
|
Stachelek P, MacKenzie L, Parker D, Pal R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat Commun 2022; 13:553. [PMID: 35087047 PMCID: PMC8795401 DOI: 10.1038/s41467-022-28220-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular machinery of life is founded on chiral building blocks, but no experimental technique is currently available to distinguish or monitor chiral systems in live cell bio-imaging studies. Luminescent chiral molecules encode a unique optical fingerprint within emitted circularly polarized light (CPL) carrying information about the molecular environment, conformation, and binding state. Here, we present a CPL Laser Scanning Confocal Microscope (CPL-LSCM) capable of simultaneous chiroptical contrast based live-cell imaging of endogenous and engineered CPL-active cellular probes. Further, we demonstrate that CPL-active probes can be activated using two-photon excitation, with complete CPL spectrum recovery. The combination of these two milestone results empowers the multidisciplinary imaging community, allowing the study of chiral interactions on a sub-cellular level in a new (chiral) light.
Collapse
Affiliation(s)
- Patrycja Stachelek
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Lewis MacKenzie
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
13
|
Adewuyi JA, Schley ND, Ung G. Synthesis of bright water-soluble circularly polarized luminescence emitters as potential sensors. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01398j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complexes exhibiting strong circularly polarized luminescence in water were synthesized and used as CPL probes sensing pH and metal ions.
Collapse
Affiliation(s)
- Joseph A. Adewuyi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
14
|
Takaishi K, Murakami S, Iwachido K, Ema T. Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule. Chem Sci 2021; 12:14570-14576. [PMID: 34881009 PMCID: PMC8580037 DOI: 10.1039/d1sc04403f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
A series of axially chiral binaphthyls and quaternaphthyls possessing two kinds of aromatic fluorophores, such as pyrenyl, perylenyl, and 4-(dimethylamino)phenyl groups, arranged alternately were synthesized by a divergent method. In the excited state, the fluorophores selectively formed a unidirectionally twisted exciplex (excited heterodimer) by a cumulative steric effect and exhibited circularly polarized luminescence (CPL). They are the first examples of a monomolecular exciplex CPL dye. This versatile method for producing exciplex CPL dyes also improved fluorescence intensity, and the CPL properties were not very sensitive to the solvent or to the temperature owing to the conformationally rigid exciplex. This systematic study allowed us to confirm that the excimer chirality rule can be applied to the exciplex dyes: left- and right-handed exciplexes with a twist angle of less than 90° exhibit (-)- and (+)-CPL, respectively.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Sho Murakami
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Kazuhiro Iwachido
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
15
|
Martin KE, Cosby AG, Boros E. Multiplex and In Vivo Optical Imaging of Discrete Luminescent Lanthanide Complexes Enabled by In Situ Cherenkov Radiation Mediated Energy Transfer. J Am Chem Soc 2021; 143:9206-9214. [PMID: 34114809 DOI: 10.1021/jacs.1c04264] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, we pioneered the application of Cherenkov radiation (CR) of radionuclides for the in situ excitation of discrete Eu(III) and Tb(III) complexes. CR is produced by isotopes decaying under emission of charged particles in dielectric media and exhibits a maximum intensity below 400 nm. We have demonstrated that luminescent lanthanide antenna complexes are ideal acceptors for Cherenkov radiation-mediated energy transfer (CRET). Here, we develop and assess peptide-functionalized Tb(III) and Eu(III) complexes in conjunction with CRET excitation by the positron emissive radioisotope 18F for simultaneous, multiplexed imaging and in vivo optical imaging. This work demonstrates, for the first time, that the detection of the luminescence emission of a discrete Eu(III) complex in vivo is feasible. Our results open possibilities for discrete luminescent lanthanide complexes to be used as diagnostic, optical tools for the intrasurgical guidance of tumor resection.
Collapse
Affiliation(s)
- Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Alexia G Cosby
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
16
|
Parker D, Fradgley JD, Wong KL. The design of responsive luminescent lanthanide probes and sensors. Chem Soc Rev 2021; 50:8193-8213. [PMID: 34075982 DOI: 10.1039/d1cs00310k] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The principles of the design of responsive luminescent probes and sensors based on lanthanide emission are summarised, based on a mechanistic understanding of their mode of action. Competing kinetic pathways for deactivation of the excited states that occur are described, highlighting the need to consider each of the salient quenching processes. Such an analysis dictates the choice of both the ligand and its integral sensitising moiety for the particular application. The key aspects of quenching involving electron transfer and vibrational and electronic energy transfer are highlighted and exemplified. Responsive systems for pH, pM, pX and pO2 and selected biochemical analytes are distinguished, according to the nature of the optical signal observed. Signal changes include both simple and ratiometric intensity measurements, emission lifetime variations and the unique features associated with the observation of circularly polarised luminescence (CPL) for chiral systems. A classification of responsive lanthanide probes is introduced. Examples of the operation of probes for reactive oxygen species, citrate, bicarbonate, α1-AGP and pH are used to illustrate reversible and irreversible transformations of the ligand constitution, as well as the reversible changes to the metal primary and secondary coordination sphere that sensitively perturb the ligand field. Finally, systems that function by modulation of dynamic quenching of the ligand or metal excited states are described, including real time observation of endosomal acidification in living cells, rapid urate analysis in serum, accurate temperature assessment in confined compartments and high throughput screening of drug binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
17
|
Fradgley JD, Frawley AT, Pal R, Parker D. Striking solvent dependence of total emission and circularly polarised luminescence in coordinatively saturated chiral europium complexes: solvation significantly perturbs the ligand field. Phys Chem Chem Phys 2021; 23:11479-11487. [PMID: 33959741 DOI: 10.1039/d1cp01686e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Examination of total emission and circularly polarised luminescence (CPL) spectra of three 9-coordinate Eu(iii) complexes with well-defined speciation shows that the ligand fields of these C3 symmetric complexes are extremely sensitive to solvent polarity, even when solvent is not present in the first coordination sphere. The energies, intensities, and (for CPL) the sign of some transitions vary with solvent polarity. These observations are rationalised by analysis of the factors that control total and circularly polarised emission, and have important implications for design of responsive luminescent Ln(iii) probes.
Collapse
Affiliation(s)
- Jack D Fradgley
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Andrew T Frawley
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
18
|
Europium coordination polymer particles based electrospun nanofibrous film for point-of-care testing of copper (II) ions. Talanta 2021; 228:122270. [PMID: 33773718 DOI: 10.1016/j.talanta.2021.122270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
Excess free copper in serum has been identified to induce neurodegenerative diseases such as Alzheimer's disease, thus it is very important to determine copper (II) ions (Cu2+) content for human health test. Herein we developed a point-of-care testing (POCT) platform through a luminescence "on-off" recognition mechanism of serum copper. Microsized europium coordination polymer particles (Eu-CPs), which was prepared with citric acid (CA) and europium nitrate hexahydrate through a hydrothermal route, were then successfully loaded with the mixture of 2,6-pyridinedicarboxylic acid (DPA) and poly(vinyl alcohol) (PVA) to form electrospun nanofibrous films (ENFFs). The as-prepared Eu-CPs/DPA/PVA ENFFs exhibited red emission at 618 nm when exciting at 280 nm, with the quantum yields of 22.2% owing to the antenna effect from DPA to Eu3+. Furthermore, the strong luminescence could be selectively quenched by Cu2+ through coordination with DPA to interrupt the antenna effect. With that, Cu2+ was successfully detected in the range of 2-45 μM with a detection of limit of 1.3 μM, well matching with the requirement of clinic test of excess free copper induced neurodegenerative diseases. As a proof of concept at last, this POCT platform was used to detect free copper in spiked serum samples with a recovery of 101.1%-105.2%, demonstrating that this platform provides significant potential for use in clinical test.
Collapse
|
19
|
Starck M, Fradgley JD, Pal R, Zwier JM, Lamarque L, Parker D. Synthesis and Evaluation of Europium Complexes that Switch on Luminescence in Lysosomes of Living Cells. Chemistry 2021; 27:766-777. [PMID: 33197072 PMCID: PMC7839496 DOI: 10.1002/chem.202003992] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Indexed: 12/14/2022]
Abstract
A set of four luminescent EuIII complexes bearing an extended aryl-alkynylpyridine chromophore has been studied, showing very different pH-dependent behaviour in their absorption and emission spectral response. For two complexes with pKa values of 6.45 and 6.20 in protein-containing solution, the emission lifetime increases very significantly following protonation. By varying the gate time during signal acquisition, the 'switch-on' intensity ratio could be optimised, and enhancement factors of between 250 to 1330 were measured between pH 8 and 4. The best-behaved probe showed no significant emission dependence on the concentration of endogenous cations, reductants, and serum albumin. It was examined in live-cell imaging studies to monitor time-dependent lysosomal acidification, for which the increase in observed image brightness due to acidification was a factor of 50 in NIH-3T3 cells.
Collapse
Affiliation(s)
- Matthieu Starck
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Jack D. Fradgley
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Robert Pal
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Laurent Lamarque
- Research and Development Cisbio BioassaysBP 8417530200CodoletFrance
| | - David Parker
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
20
|
MacKenzie LE, Pal R. Circularly polarized lanthanide luminescence for advanced security inks. Nat Rev Chem 2020; 5:109-124. [PMID: 37117607 DOI: 10.1038/s41570-020-00235-4] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Authenticating products and documents with security inks is vital to global commerce, security and health. Lanthanide complexes are widely used in luminescent security inks owing to their unique and robust photophysical properties. Lanthanide complexes can also be engineered to undergo circularly polarized luminescence (CPL), which encodes chiral molecular fingerprints in luminescence spectra that cannot be decoded by conventional optical measurements. However, chiral CPL signals have not yet been exploited as an extra security layer in advanced security inks. This Review introduces CPL and related concepts that are necessary to appreciate the challenges and potential of lanthanide-based, CPL-active security inks. We describe recent advances in CPL analysis and read-out technologies that have expedited CPL-active security ink applications. Further, we provide a systematic meta-analysis of strongly CPL-active Euiii, Tbiii, Smiii, Ybiii, Cmiii, Dyiii and Criii complexes, discussing the suitability of their photophysical properties and highlighting promising candidates. We conclude by providing key recommendations for the development and advancement of the field.
Collapse
|
21
|
Deng M, Schley ND, Ung G. High circularly polarized luminescence brightness from analogues of Shibasaki's lanthanide complexes. Chem Commun (Camb) 2020; 56:14813-14816. [PMID: 33140754 DOI: 10.1039/d0cc06568d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To reach the promising potential of circularly polarized luminescence (CPL) emitters, high CPL brightness must be achieved. We describe the synthesis of analogues of the C3-symmetrical Shibasaki's lanthanide complexes (Sm, Tb, Dy) supported by enantiopure 5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol (H8-Binol). The complexes exhibit visible luminescence in solution with exceptionally high quantum yields for Sm (4%) and Dy (17%), and strong circularly polarized luminescence for Sm, Tb, and Dy (|glum| up to 0.44, 0.32, 0.33, respectively). Altogether, these complexes possess amongst the strongest CPL brightness reported to date in lanthanide molecular complexes (up to 782 M-1 cm-1 for Tb).
Collapse
Affiliation(s)
- Min Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| |
Collapse
|
22
|
Fang F, Zhao D, Zhang Y, Li M, Ye J, Zhang J. Europium-Doped Nanoparticles for Cellular Luminescence Lifetime Imaging via Multiple Manipulations of Aggregation State. ACS APPLIED BIO MATERIALS 2020; 3:5103-5110. [DOI: 10.1021/acsabm.0c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yinfeng Zhang
- International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jun Ye
- Department of Chemistry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
23
|
Dee C, Zinna F, Kreidt E, Arrico L, Rodríguez-Rodríguez A, Platas-Iglesias C, Di Bari L, Seitz M. Circularly polarized luminescence of enantiopure carboline-based europium cryptates under visible light excitation. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Monteiro JHSK. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020; 25:E2089. [PMID: 32365719 PMCID: PMC7248892 DOI: 10.3390/molecules25092089] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The use of luminescence in biological systems allows one to diagnose diseases and understand cellular processes. Molecular systems, particularly lanthanide(III) complexes, have emerged as an attractive system for application in cellular luminescence imaging due to their long emission lifetimes, high brightness, possibility of controlling the spectroscopic properties at the molecular level, and tailoring of the ligand structure that adds sensing and therapeutic capabilities. This review aims to provide a background in luminescence imaging and lanthanide spectroscopy and discuss selected examples from the recent literature on lanthanide(III) luminescent complexes in cellular luminescence imaging, published in the period 2016-2020. Finally, the challenges and future directions that are pointing for the development of compounds that are capable of executing multiple functions and the use of light in regions where tissues and cells have low absorption will be discussed.
Collapse
|
25
|
Zhang K, Chen TT, Feng CC, Shen YJ, Yang ZR, Zhu C. Luminescent Sm(III) complex bearing dynamic imine bonds as a multi-responsive fluorescent sensor for F - and PO 43- anions together with Zn 2+ cation in water samples. Anal Chim Acta 2020; 1118:52-62. [PMID: 32418604 DOI: 10.1016/j.aca.2020.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
We have designed and synthesized a new luminescent mononuclear samarium (III) complex Sm-2h based on the [1 + 1] Schiff-base macrocycle H2L2h, derived from the cyclocondensation reaction between dialdehyde and diamine precursors, and its exact architecture is determined to be [Sm(HL2h) (NO3)2]. The sensing ability of complex Sm-2h is carefully evaluated for various common inorganic ions in solution. It is shown that complex Sm-2h is a multi-responsive fluorimetric sensor with high selectivity for F- and PO43- anions together with Zn2+ cation. The sensing process is rapid within 60 s for F- and PO43- ions and 300 s for Zn2+ ion. Further detailed responsive investigations suggest that its sensing behavior has excellent linear relationship between the fluorescence intensity (or absorption value) and ion concentration. The limit of detection (LOD) for sensing F-, PO43- and Zn2+ ions are as low as 2.61 μM (2.94 μM), 1.92 μM (1.64 μM) and 5.67 μM (3.53 μM), respectively, verified by fluorimetric (or colorimetric) titration experiments. ESI mass spectra prove that these efficient detections originate from the structure collapse of sensor Sm-2h because of the ion-induced imine bond breakage. Moreover, sensor Sm-2h shows excellent sensing performances for F-, PO43- and Zn2+ ions in real water samples, and we also have developed a convenient method to detect these three ions by use of the sensor impregnated test paper strips, providing rapid and distinguishable fluorimetric color changes. Therefore, the macrocyclic Sm(III) complex Sm-2h could be regarded as a valuable candidate for monitoring F-, PO43- and Zn2+ ions in practical applications.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China.
| | - Ting-Ting Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Cheng-Cheng Feng
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Yin-Jing Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Zhuo-Ran Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Chaoying Zhu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| |
Collapse
|
26
|
Gupta K, Verma M, Srivastava P, Sivakumar S, Patra AK. A luminescent pH-sensitive lysosome targeting Eu(iii) probe. NEW J CHEM 2020. [DOI: 10.1039/c9nj05561d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pH-responsive, water soluble luminescent Eu(iii) probe is designed to target lysosomes via intrinsic f–f emission from the Eu(iii) centre.
Collapse
Affiliation(s)
- Kritika Gupta
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Madhu Verma
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Priyanka Srivastava
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sri Sivakumar
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
27
|
Blázquez-Moraleja A, Sáenz-de-Santa María I, Chiara MD, Álvarez-Fernández D, García-Moreno I, Prieto-Montero R, Martínez-Martínez V, López Arbeloa I, Chiara JL. Shedding light on the mitochondrial matrix through a functional membrane transporter. Chem Sci 2019; 11:1052-1065. [PMID: 34084361 PMCID: PMC8146229 DOI: 10.1039/c9sc04852a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The first fluorescent probes that are actively channeled into the mitochondrial matrix by a specific mitochondrial membrane transporter in living cells have been developed. The new functional probes (BCT) have a minimalist structural design based on the highly efficient and photostable BODIPY chromophore and carnitine as a biotargeting element. Both units are orthogonally bonded through the common boron atom, thus avoiding the use of complex polyatomic connectors. In contrast to known mitochondria-specific dyes, BCTs selectively label these organelles regardless of their transmembrane potential and in an enantioselective way. The obtained experimental evidence supports carnitine–acylcarnitine translocase (CACT) as the key transporter protein for BCTs, which behave therefore as acylcarnitine biomimetics. This simple structural design can be readily extended to other structurally diverse starting F-BODIPYs to obtain BCTs with varied emission wavelengths along the visible and NIR spectral regions and with multifunctional capabilities. BCTs are the first fluorescent derivatives of carnitine to be used in cell microscopy and stand as promising research tools to explore the role of the carnitine shuttle system in cancer and metabolic diseases. Extension of this approach to other small-molecule mitochondrial transporters is envisaged. A BODIPY derivative of carnitine enters mitochondria regardless of their membrane potential and in an enantioselective way through a specific mitochondrial membrane transporter in living cells.![]()
Collapse
Affiliation(s)
| | - Ines Sáenz-de-Santa María
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Central de Asturias 33011 Oviedo Spain
| | - María D Chiara
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Central de Asturias 33011 Oviedo Spain
| | | | | | - Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco UPV-EHU, Facultad de Ciencia y Tecnología Apartado 644 48080 Bilbao Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco UPV-EHU, Facultad de Ciencia y Tecnología Apartado 644 48080 Bilbao Spain
| | - Iñigo López Arbeloa
- Departamento de Química Física, Universidad del País Vasco UPV-EHU, Facultad de Ciencia y Tecnología Apartado 644 48080 Bilbao Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC) Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
28
|
Starck M, Fradgley JD, Di Vita S, Mosely JA, Pal R, Parker D. Targeted Luminescent Europium Peptide Conjugates: Comparative Analysis Using Maleimide and para-Nitropyridyl Linkages for Organelle Staining. Bioconjug Chem 2019; 31:229-240. [DOI: 10.1021/acs.bioconjchem.9b00735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Jack D. Fradgley
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Stefania Di Vita
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
29
|
Kovacs D, Kiraev SR, Phipps D, Orthaber A, Borbas KE. Eu(III) and Tb(III) Complexes of Octa- and Nonadentate Macrocyclic Ligands Carrying Azide, Alkyne, and Ester Reactive Groups. Inorg Chem 2019; 59:106-117. [DOI: 10.1021/acs.inorgchem.9b01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Dulcie Phipps
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| |
Collapse
|
30
|
Pelc R, Mašek V, Llopis-Torregrosa V, Bouř P, Wu T. Spectral counterstaining in luminescence-enhanced biological Raman microscopy. Chem Commun (Camb) 2019; 55:8329-8332. [PMID: 31257378 DOI: 10.1039/c9cc03139a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell imaging heavily depends on fluorescent labels typically incompatible with Raman microscopy. The europium(iii) complex based on dipicolinic acid (DPA) presented here is an exception from this rule. Although its luminescence bands are very narrow, their intensity is comparable to the background Raman bands. This makes it complementary to less luminous compounds referred to as Raman tags. Through several examples we show that the complex provides a morphological context in otherwise unstained cells, thus acting as a spectral-counterstaining agent.
Collapse
Affiliation(s)
- Radek Pelc
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | - Vlastimil Mašek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Vicent Llopis-Torregrosa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | - Tao Wu
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| |
Collapse
|
31
|
Esteban-Gómez D, Büldt LA, Pérez-Lourido P, Valencia L, Seitz M, Platas-Iglesias C. Understanding the Optical and Magnetic Properties of Ytterbium(III) Complexes. Inorg Chem 2019; 58:3732-3743. [DOI: 10.1021/acs.inorgchem.8b03354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Laura A. Büldt
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|
32
|
Ning Y, Chen S, Chen H, Wang JX, He S, Liu YW, Cheng Z, Zhang JL. A proof-of-concept application of water-soluble ytterbium(iii) molecular probes in in vivo NIR-II whole body bioimaging. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00157c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lanthanide complexes are firstly applied for in vivo NIR-II high resolution whole body bioimaging.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Si Chen
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Jing-Xiang Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Shuqing He
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Yi-Wei Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
33
|
Nonat A, Esteban-Gómez D, Valencia L, Pérez-Lourido P, Barriada JL, Charbonnière LJ, Platas-Iglesias C. The role of ligand to metal charge-transfer states on the luminescence of Europium complexes with 18-membered macrocyclic ligands. Dalton Trans 2019; 48:4035-4045. [DOI: 10.1039/c8dt05005h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stabilization of a divalent Europium provides an efficient pathway for the quenching of the luminescence in ten-coordinate macrocyclic complexes.
Collapse
Affiliation(s)
- Aline Nonat
- Synthèse pour l'Analyse (SynPA)
- Institut Pluridisciplinaire Hubert Curien (IPHC
- UMR 7178
- CNRS/Université de Strasbourg)
- ECPM
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- Campus da Zapateira-Rúa da Fraga 10
- 15008 A Coruña
- Spain
| | - Laura Valencia
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidade de Vigo
- 36310 Pontevedra
- Spain
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidade de Vigo
- 36310 Pontevedra
- Spain
| | - José Luis Barriada
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- Campus da Zapateira-Rúa da Fraga 10
- 15008 A Coruña
- Spain
| | - Loïc J. Charbonnière
- Synthèse pour l'Analyse (SynPA)
- Institut Pluridisciplinaire Hubert Curien (IPHC
- UMR 7178
- CNRS/Université de Strasbourg)
- ECPM
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Universidade da Coruña
- Campus da Zapateira-Rúa da Fraga 10
- 15008 A Coruña
- Spain
| |
Collapse
|
34
|
Mathieu E, Sipos A, Demeyere E, Phipps D, Sakaveli D, Borbas KE. Lanthanide-based tools for the investigation of cellular environments. Chem Commun (Camb) 2018; 54:10021-10035. [PMID: 30101249 DOI: 10.1039/c8cc05271a] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological probes constructed from lanthanides can provide a variety of readout signals, such as the luminescence of Eu(iii), Tb(iii), Yb(iii), Sm(iii) and Dy(iii), and the proton relaxation enhancement of Gd(iii) and Eu(ii). For numerous applications the intracellular delivery of the lanthanide probe is essential. Here, we review the methods for the intracellular delivery of non-targeted complexes (i.e. where the overall complex structure enhances cellular uptake), as well as complexes attached to a targeting unit (i.e. to a peptide or a small molecule) that facilitates delivery. The cellular applications of lanthanide-based supramolecules (dendrimers, metal organic frameworks) are covered briefly. Throughout, we emphasize the techniques that can confirm the intracellular localization of the lanthanides and those that enable the determination of the fate of the probes once inside the cell. Finally, we highlight methods that have not yet been applied in the context of lanthanide-based probes, but have been successful in the intracellular delivery of other metal-based probes.
Collapse
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Le Fur M, Molnár E, Beyler M, Fougère O, Esteban-Gómez D, Rousseaux O, Tripier R, Tircsó G, Platas-Iglesias C. Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorg Chem 2018; 57:6932-6945. [DOI: 10.1021/acs.inorgchem.8b00598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Enikő Molnár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Maryline Beyler
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Olivier Fougère
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Olivier Rousseaux
- Groupe Guerbet,
Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
36
|
Ning Y, Tang J, Liu YW, Jing J, Sun Y, Zhang JL. Highly luminescent, biocompatible ytterbium(iii) complexes as near-infrared fluorophores for living cell imaging. Chem Sci 2018; 9:3742-3753. [PMID: 29780506 PMCID: PMC5939605 DOI: 10.1039/c8sc00259b] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/18/2018] [Indexed: 12/27/2022] Open
Abstract
We report three synthetic methods to prepare biocompatible Yb3+ complexes, which displayed high NIR luminescence with quantum yields up to 13% in aqueous media. This renders β-fluorinated Yb3+ porphyrinoids a new class of NIR probes for living cell imaging including time-resolved fluorescence lifetime imaging.
Herein, we report the design and synthesis of biocompatible Yb3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb3+ luminescence signals when the biocompatible Yb3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Yi-Wei Liu
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Jing Jing
- School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | | | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| |
Collapse
|
37
|
Nielsen LG, Junker AKR, Sørensen TJ. Composed in the f-block: solution structure and function of kinetically inert lanthanide(iii) complexes. Dalton Trans 2018; 47:10360-10376. [DOI: 10.1039/c8dt01501e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An induction to the wonders of lanthanides, and a call for standardised methods for characterisation of lanthanide complexes in solution.
Collapse
Affiliation(s)
- Lea Gundorff Nielsen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Anne Kathrine R. Junker
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| |
Collapse
|