1
|
Milchev A, Binder K. Surface enrichment and interdiffusion in blends of semiflexible polymers of different stiffness. SOFT MATTER 2022; 18:3781-3792. [PMID: 35514321 DOI: 10.1039/d2sm00036a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A model for a mixture of two kinds of semiflexible polymers (A and B) with the same chain length (NA = NB = 32), but different persistence lengths, confined between parallel planar repulsive walls in a common good solvent is studied by molecular dynamics simulations. In the isotropic phase at low polymer concentrations, both polymers are repelled by the walls, and the system is anisotropic near the walls over a range controlled by the polymer linear dimensions. Close to the concentrations where in the bulk nematic order sets in, precursors of thick nematic layers at the walls are observed, strongly enriched by a stiffer component, which hence is depleted in the center of the slit pore. At larger concentrations, where in the bulk a uniformly mixed nematic phase occurs, the enrichment of B-chains at the walls is rather minor, extending over the scale of the transverse correlation length of concentration fluctuations, which is of the order of a few monomeric diameters only for the present model. In this ordered phase, both self-diffusion and interdiffusion of chains (in the direction perpendicular to the director) are found to be significantly slowed down in comparison to dilute solutions. Since equilibration times scale with the square of the slit thickness, incomplete equilibration is predicted when polymeric coatings on substrate containing polymers differing in stiffness are produced.
Collapse
Affiliation(s)
- Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113, Sofia, Bulgaria.
| | - Kurt Binder
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
2
|
Midya J, Egorov SA, Binder K, Nikoubashman A. Wetting transitions of polymer solutions: Effects of chain length and chain stiffness. J Chem Phys 2022; 156:044901. [DOI: 10.1063/5.0077303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jiarul Midya
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Sergei A. Egorov
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Kurt Binder
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
3
|
Milchev A, Binder K. Cylindrical confinement of solutions containing semiflexible macromolecules: surface-induced nematic order versus phase separation. SOFT MATTER 2021; 17:3443-3454. [PMID: 33646224 DOI: 10.1039/d1sm00172h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solutions of semiflexible polymers confined in cylindrical pores with repulsive walls are studied by Molecular Dynamics simulations for a wide range of polymer concentrations. Both the case where both lengths are of the same order and the case when the persistence length by far exceeds the contour length are considered, and the enhancement of nematic order along the cylinder axis is characterized. With increasing density the character of the surface effect changes from depletion to the formation of a layered structure. For binary 50 : 50 mixtures of the two types of polymers an interplay between surface enrichment of the stiffer component and the isotropic-nematic transition is found, and a phase separated structure with cylindrical symmetry occurs, with the isotropic phase located around the cylinder axis. For melt densities the mixed nematic phase forms at the wall a layer with a screw-like structure of a tilted smectic phase. The observed behavior is tentatively interpreted in terms of the competition of the chain orientational entropy with entropy of mixing and excluded volume due to the wall.
Collapse
Affiliation(s)
- Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113, Sofia, Bulgaria.
| | | |
Collapse
|
4
|
Nikoubashman A. Ordering, phase behavior, and correlations of semiflexible polymers in confinement. J Chem Phys 2021; 154:090901. [DOI: 10.1063/5.0038052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
5
|
Egorov SA. Phase Behavior of Lyotropic Liquid-Crystalline Polymers under Varying Solvent Conditions: Effect of External Fields on the Phase Diagram. J Phys Chem B 2021; 125:1513-1528. [PMID: 33507757 DOI: 10.1021/acs.jpcb.0c10905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we report a Density Functional Theory based study of phase behavior of lyotropic liquid-crystalline polymers under both good and varying solvent conditions in the presence of external electric or magnetic field. Our microscopic model for the good solvent case is based on the tangent hard-sphere chain with bond-bending potential to account for the chain stiffness; the variable solvent quality is modeled by adding attractive monomer-monomer interactions. The phase diagrams are constructed in three intensive variables (temperature, pressure, and field strength), and are characterized by the presence of critical and triple lines, which originate from the critical and triple points of the corresponding zero-field case. The merging of critical and triple lines results in the appearance of the "double critical" and "critical triple" points, already known from the earlier studies of the phase behavior of spin fluids in magnetic fields. The important difference of the present model from the spin fluids is due to the finite stiffness of the polymer chains (characterized by their persistence length), which adds an additional parameter controlling the morphology of the phase diagrams.
Collapse
Affiliation(s)
- Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
6
|
Mizani S, Gurin P, Aliabadi R, Salehi H, Varga S. Demixing and tetratic ordering in some binary mixtures of hard superellipses. J Chem Phys 2020; 153:034501. [PMID: 32716200 DOI: 10.1063/5.0009705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We examine the fluid phase behavior of binary mixtures of hard superellipses using the scaled particle theory. The superellipse is a general two-dimensional convex object that can be tuned between the elliptical and rectangular shapes continuously at a given aspect ratio. We find that the shape of the particle affects strongly the stability of isotropic, nematic, and tetratic phases in the mixture even if the side lengths of both species are fixed. While the isotropic-isotropic demixing transition can be ruled out using the scaled particle theory, the first order isotropic-nematic and the nematic-nematic demixing transition can be stabilized with strong fractionation between the components. It is observed that the demixing tendency is strongest in small rectangle-large ellipse mixtures. Interestingly, it is possible to stabilize the tetratic order at lower densities in the mixture of hard squares and rectangles where the long rectangles form a nematic phase, while the squares stay in the tetratic order.
Collapse
Affiliation(s)
- Sakine Mizani
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Roohollah Aliabadi
- Department of Physics, Faculty of Science, Fasa University, 74617-81189 Fasa, Iran
| | - Hamdollah Salehi
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
7
|
Milchev A, Binder K. How does stiffness of polymer chains affect their adsorption transition? J Chem Phys 2020; 152:064901. [DOI: 10.1063/1.5139940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- A. Milchev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - K. Binder
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 9, D-55099 Mainz, Germany
| |
Collapse
|
8
|
Affiliation(s)
- Michael P. Allen
- Department of Physics, University of Warwick, Coventry, UK
- H. H. Wills Physics Laboratory, Royal Fort, Bristol, UK
| |
Collapse
|
9
|
Wu L, Malijevský A, Avendaño C, Müller EA, Jackson G. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement. J Chem Phys 2018; 148:164701. [DOI: 10.1063/1.5020002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Liang Wu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alexandr Malijevský
- Department of Physical Chemistry, University of Chemical Technology Prague, 166 28 Praha 6, Czech Republic
- Department of Microscopic and Mesoscopic Modelling, ICPF of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, United Kingdom
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Milchev A, Egorov SA, Vega DA, Binder K, Nikoubashman A. Densely Packed Semiflexible Macromolecules in a Rigid Spherical Capsule. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences, 1113 Sofia, Bulgaria
| | - Sergei A. Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Daniel A. Vega
- Department of Physics, Universidad Nacional del Sur-IFISUR-CONICET, 8000 Bahía Blanca, Argentina
| | - Kurt Binder
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
11
|
Aliabadi R, Gurin P, Velasco E, Varga S. Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores. Phys Rev E 2018; 97:012703. [PMID: 29448392 DOI: 10.1103/physreve.97.012703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 11/07/2022]
Abstract
The effect of strong confinement on the positional and orientational ordering is examined in a system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee modification of the second virial density-functional theory. The rods are nonmesogenic (L/D<3) and confined between two parallel hard walls, where the width of the pore (H) is chosen in such a way that both planar (particle's long axis parallel to the walls) and homeotropic (particle's long axis perpendicular to the walls) orderings are possible and a maximum of two layers is allowed to form in the pore. In the extreme confinement limit of H≤2D, where only one-layer structures appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which becomes sharper as L→H. In wider pores (2D<H<3D) planar order with two layers, homeotropic order, and even combined bilayer structures (one layer is homeotropic, while the other is planar) can be stabilized at high densities. Moreover, first-order phase transitions can be seen between different structures. One of them emerges between a monolayer and a bilayer with planar orders at relatively low packing fractions.
Collapse
Affiliation(s)
- Roohollah Aliabadi
- Department of Physics, College of Science, Fasa University, 74617-81189 Fasa, Iran
| | - Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém, H-8201 Hungary
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém, H-8201 Hungary
| |
Collapse
|
12
|
Milchev A, Binder K. Smectic C and Nematic Phases in Strongly Adsorbed Layers of Semiflexible Polymers. NANO LETTERS 2017; 17:4924-4928. [PMID: 28679053 DOI: 10.1021/acs.nanolett.7b01948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular dynamics simulations of semiflexible polymers in a good solvent reveal a dense adsorbed layer when the solution is exposed to an attractive planar wall. This layer exhibits both a nematic and a smectic phase (smA for short and smC for longer chains) with bond vectors aligned strictly parallel to the wall. The tilt angle of the smC phase increases strongly with the contour length of the polymers. The isotropic-nematic transition is a Kosterlitz-Thouless transition and also the nematic-smectic transition is continuous. Our finding demonstrates thus a two-dimensional realization of different liquid crystalline phases, ubiquitous in three dimensions, that occurs in a single monomolecular layer ordered at least over mesoscopic scales.
Collapse
Affiliation(s)
- Andrey Milchev
- Institute for Physical Chemistry, Bulgarian Academia of Sciences , 1113 Sofia, Bulgaria
- Institut für Physik, Johannes Gutenberg Universität Mainz , 55099 Mainz, Germany
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg Universität Mainz , 55099 Mainz, Germany
| |
Collapse
|