1
|
Zhou Y, Kang J, Chen B, Zheng W, Zhang C, Ming P, Pan F, Wang J, Li B. Formation mechanism and morphology control of cracks in PEMFC catalyst layer during fabrication process: A review. Adv Colloid Interface Sci 2025; 340:103468. [PMID: 40081180 DOI: 10.1016/j.cis.2025.103468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The catalyst layer (CL) is susceptible to cracking during the fabrication process, which presents challenges to the performance and durability of proton exchange membrane fuel cell (PEMFC). This review systematically cascades mechanisms, factors, methods, and applications to provide the first all-encompassing analysis of CL cracking. To construct a research framework, this review comprehensively analyzes the formation mechanism of CL cracks and outlines various approaches for crack morphology optimization. By combining linear elastic fracture mechanics (LEFM) and related research on the drying of colloidal films, the causes of CL cracks can be attributed to structural defects and stress concentrations. On this basis, the means of crack regulation are illustrated from the perspective of ink components and drying conditions. In the end, the impact of cracks on the performance of CL is analyzed and some novel crack inhibition techniques are introduced. Although this review organizes and summarizes the results of related research, there is still a gap in the field of CL crack research. This is evidenced by the lack of a more accurate mechanism for CL crack formation, the unclarity on the effect of crack morphology on CL performance, and the fact that methods to regulate cracking by changing the drying pattern have yet to be further investigated.
Collapse
Affiliation(s)
- Yingjian Zhou
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Jialun Kang
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Benhu Chen
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Weibo Zheng
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Fengwen Pan
- National Center of Technology Innovation for Fuel Cell, 197 A, Fushou East Street, High-Tech Development Zone, Weifang 261061, People's Republic of China.
| | - Jue Wang
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.
| | - Bing Li
- Clean Energy Automotive Engineering Center & School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.
| |
Collapse
|
2
|
Liu X, Liu M, Sun Y, Yu S, Ni Y. Formation mechanism of radial and circular cracks promoted by delamination in drying silica colloidal deposits. Phys Rev E 2024; 110:034801. [PMID: 39425321 DOI: 10.1103/physreve.110.034801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/06/2024] [Indexed: 10/21/2024]
Abstract
Cracks with radial and circular patterns are appealing in nature and industry. Although morphologies and propagation conditions of cracks are extensively studied, the formation mechanism of crack pattern by the interaction of channel fracture and interfacial delamination remains elusive. Here, we present the transition of radial to coexisting radial and circular crack patterns when the thickness of colloidal deposits on both hard and soft substrates exceeds a critical value, through the colloidal volume fraction dependence. In addition, a thickness-dependent phase diagram from radial crack to coexistence of radial and circular cracks was constructed with respect to the radius and the volume fractions of silica colloidal deposits. A phase-field fracture model is developed to elucidate how the formation of radial cracks is facilitated by simultaneous delamination. The warping-induced radial tensile stress at the bottom surface of the striped deposit is proportional to the thickness. It leads to subsequent nucleation and growth of circular cracks in thick deposits. This work provides insight into the formation mechanism of complex crack patterns in drying colloidal deposits and revolutionizes the design space of crack-based micro-nano structures.
Collapse
Affiliation(s)
| | | | | | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | | |
Collapse
|
3
|
Emerse M, Lama H, Basavaraj MG, Singh R, Satapathy DK. Morphologies of electric-field-driven cracks in dried dispersions of ellipsoids. Phys Rev E 2024; 109:024604. [PMID: 38491700 DOI: 10.1103/physreve.109.024604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
We report an experimental and theoretical study of the morphology of desiccation cracks formed in deposits of hematite ellipsoids dried in an externally applied alternating current (ac) electric field. A series of transitions in the crack morphology is observed by modulating the frequency and the strength of the applied field. We also found a clear transition in the morphology of cracks as a function of the aspect ratio of the ellipsoid. We show that these transitions in the crack morphology can be explained by a linear stability analysis of the equation describing the effective dynamics of an ellipsoid placed in an externally applied ac electric field.
Collapse
Affiliation(s)
- Megha Emerse
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Hisay Lama
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Madivala G Basavaraj
- PECS Laboratory, Department of Chemical Engineering, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| | - Dillip K Satapathy
- Department of Physics, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| |
Collapse
|
4
|
Kumar S, Basavaraj MG, Satapathy DK. Effect of Colloidal Surface Charge on Desiccation Cracks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37449959 DOI: 10.1021/acs.langmuir.3c01326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
We report the effect of polarity and surface charge density on the nucleation and growth kinetics of desiccation cracks in deposits of colloids formed by drying. We show that the average spacing between desiccation cracks and crack opening are higher for the deposit of positively charged colloids than that of negatively charged colloids. The temporal evolution of crack growth is found to be faster for positively charged particle deposits. The distinct crack patterns and their kinetics are understood by considering the spatial arrangement of particles in the deposit, which is strongly influenced by the substrate-particle and particle-particle interactions. Interestingly, the crack spacing, the crack opening, and the rate at which the crack widens are found to increase upon decreasing the surface charge of the colloids.
Collapse
Affiliation(s)
- Sanket Kumar
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, India
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| |
Collapse
|
5
|
Ghosh TN, Rotake D, Kumar S, Kaur I, Singh SG. Tear-based MMP-9 detection: A rapid antigen test for ocular inflammatory disorders using vanadium disulfide nanowires assisted chemi-resistive biosensor. Anal Chim Acta 2023; 1263:341281. [PMID: 37225335 DOI: 10.1016/j.aca.2023.341281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
A sensitive, non-invasive, and biomarker detection in tear fluids for inflammation in potentially blinding eye diseases could be of great significance as a rapid diagnostic tool for quick clinical decisions. In this work, we propose a tear-based MMP-9 antigen testing platform using hydrothermally synthesized vanadium disulfide nanowires. Also, various factors contributing to baseline drifts of the chemiresistive sensor including nanowire coverage on the interdigitated microelectrode of the sensor, sensor response duration, and effect of MMP-9 protein in different matrix solutions were identified. The drifts on the sensor baseline due to nanowire coverage on the sensor were corrected using substrate thermal treatment providing a more uniform distribution of nanowires on the electrode which brought the baseline drift to 18% (coefficient of variations, CV = 18%). This biosensor exhibited sub-femto level limits of detection (LODs) of 0.1344 fg/mL (0.4933 fmoL/l) and 0.2746 fg/mL (1.008 fmoL/l) in 10 mM phosphate buffer saline (PBS) and artificial tear solution, respectively. For a practical tear MMP-9 detection, the proposed biosensor response was validated with multiplex ELISA using tear samples from five healthy controls which showed excellent precision. This label-free and non-invasive platform can serve as an efficient diagnostic tool for the early detection and monitoring of various ocular inflammatory diseases.
Collapse
Affiliation(s)
- Tanmoya Nemai Ghosh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Dinesh Rotake
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Saurabh Kumar
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, 500034, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
6
|
Pal A, Gope A, Sengupta A. Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives. Adv Colloid Interface Sci 2023; 314:102870. [PMID: 37002959 DOI: 10.1016/j.cis.2023.102870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Drying of biologically-relevant sessile droplets, including passive systems such as DNA, proteins, plasma, and blood, as well as active microbial systems comprising bacterial and algal dispersions, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo evaporative drying, with significant potential in a wide range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. Consequently, the prospects of novel and thrifty bio-medical toolkits based on drying bio-colloids have driven tremendous progress in the science of morphological patterns and advanced quantitative image-based analysis. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the physical and material properties of relevant bio-colloids and link their native composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We specifically examined the drying patterns generated by passive bio-colloids (e.g., DNA, globular, fibrous, composite proteins, plasma, serum, blood, urine, tears, and saliva). This article highlights how the emerging morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions (temperature and relative humidity), and substrate attributes like wettability. Crucially, correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a blueprint for the diagnosis of the type and stage of a specific disease (or disorder). Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets in the context of COVID-19 are also presented. We further summarized the role of biologically active agents in the drying process, including bacteria, algae, spermatozoa, and nematodes, and discussed the coupling between self-propulsion and hydrodynamics during the drying process. We wrap up the review by highlighting the role of cross-scale in situ experimental techniques for quantifying sub-micron to micro-scale features and the critical role of cross-disciplinary approaches (e.g., experimental and image processing techniques with machine learning algorithms) to quantify and predict the drying-induced features. We conclude the review with a perspective on the next generation of research and applications based on drying droplets, ultimately enabling innovative solutions and quantitative tools to investigate this exciting interface of physics, biology, data sciences, and machine learning.
Collapse
Affiliation(s)
- Anusuya Pal
- University of Warwick, Department of Physics, Coventry CV47AL, West Midlands, UK; Worcester Polytechnic Institute, Department of Physics, Worcester 01609, MA, USA.
| | - Amalesh Gope
- Tezpur University, Department of Linguistics and Language Technology, Tezpur 784028, Assam, India
| | - Anupam Sengupta
- University of Luxembourg, Physics of Living Matter, Department of Physics and Materials Science, Luxembourg L-1511, Luxembourg
| |
Collapse
|
7
|
Chen H, Zhang Y, Wang H, Dong X, Zang D. Evaporation Caused Invaginations of Acoustically Levitated Colloidal Droplets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:133. [PMID: 36616043 PMCID: PMC9824602 DOI: 10.3390/nano13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Controlled buckling of colloidal droplets via acoustic levitation plays an important role in pharmaceutical, coating, and material self-assembly. In this study, the evaporation process of PTFE colloidal droplets with two particle concentrations (60 wt% and 20 wt%) was investigated under acoustic levitation. We report the occurrence of surface invagination caused by evaporation. For the high particle concentration droplet, the upper surface was invaginated, eventually forming a bowl-shaped structure. While for the low particle concentration droplet, both the upper and lower surfaces of the droplet were invaginated, resulting in a doughnut-like structure. For the acoustically levitated oblate spherical droplet, the dispersant loss at the equatorial area of the droplet is greater than that at the two poles. Therefore, the thickness of the solid shell on the surface of the droplet was not uniform, resulting in invagination at the weaker pole area. Moreover, once the droplet surface was buckling, the hollow cavity on the droplet surface would absorb the sound energy and results in strong positive acoustic radiation pressure at bottom of the invagination, thus further prompting the invagination process.
Collapse
Affiliation(s)
- Hongyue Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yongjian Zhang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, School of Mechanical and Material Engineering, Xi’an University, Xi’an 710065, China
| | - Heyi Wang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, School of Mechanical and Material Engineering, Xi’an University, Xi’an 710065, China
| | - Xin Dong
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, School of Mechanical and Material Engineering, Xi’an University, Xi’an 710065, China
| | - Duyang Zang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
8
|
Cheeyattil S, Rajan A, Stephen J, Radhakrishnan M. Study on the optimization of barley flour xerogel and its programed oleomorphic
3D
shape‐shifting. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subith Cheeyattil
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| | - Anbarasan Rajan
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| | - Jaspin Stephen
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal Processing National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| |
Collapse
|
9
|
Yang XY, Li GH, Huang X, Yu YS. Evaporative Deposition of Surfactant-Laden Nanofluid Droplets over a Silicon Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11666-11674. [PMID: 36097700 DOI: 10.1021/acs.langmuir.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Morphologies of evaporative deposition, which has been widely applied in potential fields, were induced by the competition between internal flows inside evaporating droplets. Controlling the pattern of deposition and suppressing the coffee-ring effect are essential issues of intense interest in the aspects of industrial technologies and scientific applications. Here, evaporative deposition of surfactant-laden nanofluid droplets over silicon was experimentally investigated. A ring-like deposition was formed after complete evaporation of sodium dodecyl sulfate (SDS)-laden nanofluid droplets with an initial SDS concentration ranging from 0 to 1.5 CMC. In the case of initial SDS concentrations above 1.3 CMC, no cracks were observed in the ring-like deposition, indicating that the deposition patterns of nanofluid droplets could be completely changed and cracks could be eliminated by sufficient addition of SDS. With the increase of the initial concentration of hexadecyl trimethylammonium bromide (CTAB), the width of the deposition ring gradually decreased until no ring-like structure was formed. On the contrary, with the increase of the initial Triton X-100 (TX-100) concentration, the width of the deposition ring gradually increased until a uniform deposition was generated. Moreover, when the initial TX-100 concentration was high, a "tree-ring-like" pattern was discovered. Besides, morphologies of evaporative pattern due to the addition of surfacants were qualitatively analyzed.
Collapse
Affiliation(s)
- Xiao-Ye Yang
- Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Guo-Hao Li
- Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Xianfu Huang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Song Yu
- Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, P. R. China
| |
Collapse
|
10
|
Liu M, Yu S, He L, Ni Y. Recent progress on crack pattern formation in thin films. SOFT MATTER 2022; 18:5906-5927. [PMID: 35920383 DOI: 10.1039/d2sm00716a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fascinating pattern formation by quasi-static crack growth in thin films has received increasing interest in both interdisciplinary science and engineering applications. The paper mainly reviews recent experimental and theoretical progress on the morphogenesis and propagation of various quasi-static crack patterns in thin films. Several key factors due to changes in loading types and substrate confinement for choosing crack paths toward different patterns are summarized. Moreover, the effect of crack propagation coupled to other competing or coexisting stress-relaxation processes in thin films, such as interface debonding/delamination and buckling instability, on the formation and transition of crack patterns is discussed. Discussions on the sources and changes in the driving force that determine crack pattern evolution may provide guidelines for the reliability and failure mechanism of thin film structures by cracking and for controllable fabrication of various crack patterns in thin films.
Collapse
Affiliation(s)
- Mengqi Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Linghui He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yong Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
11
|
Lee S, A. M. T, Cho G, Lee J. Control of the Drying Patterns for Complex Colloidal Solutions and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2600. [PMID: 35957030 PMCID: PMC9370329 DOI: 10.3390/nano12152600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
The uneven deposition at the edges of an evaporating droplet, termed the coffee-ring effect, has been extensively studied during the past few decades to better understand the underlying cause, namely the flow dynamics, and the subsequent patterns formed after drying. The non-uniform evaporation rate across the colloidal droplet hampers the formation of a uniform and homogeneous film in printed electronics, rechargeable batteries, etc., and often causes device failures. This review aims to highlight the diverse range of techniques used to alleviate the coffee-ring effect, from classic methods such as adding chemical additives, applying external sources, and manipulating geometrical configurations to recently developed advancements, specifically using bubbles, humidity, confined systems, etc., which do not involve modification of surface, particle or liquid properties. Each of these methodologies mitigates the edge deposition via multi-body interactions, for example, particle-liquid, particle-particle, particle-solid interfaces and particle-flow interactions. The mechanisms behind each of these approaches help to find methods to inhibit the non-uniform film formation, and the corresponding applications have been discussed together with a critical comparison in detail. This review could pave the way for developing inks and processes to apply in functional coatings and printed electronic devices with improved efficiency and device yield.
Collapse
Affiliation(s)
- Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tiara A. M.
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Research Engineering Center for R2R Printed Flexible Computer, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyoujin Cho
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Research Engineering Center for R2R Printed Flexible Computer, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
12
|
Lilin P, Bischofberger I. Criteria for Crack Formation and Air Invasion in Drying Colloidal Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7442-7447. [PMID: 35605177 DOI: 10.1021/acs.langmuir.2c00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The drying of sessile drops of aqueous colloidal suspensions leads to the formation of a close-packed particle deposit. As water evaporates, a solidification front propagates from the edge of the drop toward the center, leaving behind a thin disk-shaped deposit. For drops with sufficiently large particle volume fractions, the deposit eventually covers the entire wetted area. In this regime, the dynamics of the deposit growth is governed by volume conservation across a large range of particle volume fractions and drying times. During drying, water flows radially through the deposit to compensate for evaporation over the solid's surface, creating a negative pore pressure in the deposit which we rationalize with a hydrodynamic model. We show that the pressure inside the deposit controls both the onset of crack formation and the onset of air invasion. Two distinct regimes of air invasion occur, which we can account for using the same model that further provides a quantitative criterion for the crossover between the two regimes.
Collapse
Affiliation(s)
- Paul Lilin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Irmgard Bischofberger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Dewangan JK, Basu N, Chowdhury M. Scaling mechanical instabilities in drying micellar droplets. SOFT MATTER 2022; 18:4253-4264. [PMID: 35608257 DOI: 10.1039/d2sm00304j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drying-induced mechanical instabilities in aqueous solution droplets occur primarily because, during evaporation, the central liquid minimizes the surface tension by pulling the packed gel-like region, leading to a stretching effect of the liquid region at the receding wet front. Under an appropriate scenario, it finally perturbs the gel-like zone at the droplet periphery, generating cracks, wrinkles, folds, cavities, buckles, etc. Here we report unique wrinkling patterns from evaporating sessile micellar aqueous droplets on rigid and soft substrates kept at temperatures well above the ambient. The wrinkling patterns remarkably vary depending on the material's elastic modulus and substrate, the concentration of the micellar solution (CCTAB), and the substrate temperature (TS). In the low concentration regime (CCTAB ≤ 0.0364 wt%), coffee-ring-like morphologies are observed devoid of any wrinkling morphology irrespective of TS and the substrate's elastic modulus. In the high initial concentration regime (CCTAB ≥ 0.0364 wt%), for droplets deposited at TS ≥ 85 °C, wrinkle formation starts at the droplet peripheral zone, radial on the stiff glass substrate, and annular on the soft cross-linked PDMS substrate. At CCTAB ≥ 2.73 wt%, radial wrinkles on the glass substrate and annular wrinkles on the cross-linked PDMS substrate nucleate from the edges connecting to the central region of the deposit. The ratio between the width of the gel-like deposit (or wrinkle length) and the droplet's radius scales with the initial concentration of the surfactant and depends on the initial equilibrium contact angle of the micellar droplets. Our results support existing understandings of mechanical instabilities of dried deposits, which satisfies interdependent scaling relationships among their number, lengthscale (dried deposit radius, the wavelength of the wrinkles, and peripheral undulations from Rayleigh-Bénard instability), thickness, and elastic modulus. Interestingly, we found substrate-dependent antagonistic interdependence of the elastic modulus of the dried deposit with the initial surfactant concentration.
Collapse
Affiliation(s)
- Jayant K Dewangan
- Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Nandita Basu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Mithun Chowdhury
- Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
14
|
Zhang C, Li W, Wang Y. Ultrafast Self-Assembly of Colloidal Photonic Crystals during Low-Pressure-Assisted Evaporation of Droplets. J Phys Chem Lett 2022; 13:3776-3780. [PMID: 35446036 DOI: 10.1021/acs.jpclett.2c00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
After evaporation of a sessile colloidal droplet, the coffee stain always emerges with disordered structures. This may be unfavorable for many applications, such as droplet-based printing. Therefore, to realize uniform and ordered patterns is becoming an urgent task. In this work, we realize ultrafast fabrication of uniform colloidal crystals by suppressing the coffee ring effect in flash evaporation of a droplet. The low-pressure environment can tremendously improve the evaporation rate, which will accelerate the colloidal particles to be captured by the gas-liquid interface and self-assemble into ordered structures instantaneously. With the control of the pressure and concentration, the uniform and ordered patterns can be realized in several seconds. The colloidal photonic crystals with diverse structural colors can be easily and rapidly obtained by adjusting the particle sizes. We think this work may have instructive significance in the rapid fabrication of high-quality and high-performance printed electronics.
Collapse
Affiliation(s)
- Chen Zhang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weibin Li
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuren Wang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
15
|
Kumar S, Kumar H, Basavaraj MG, Satapathy DK. Formation and suppression of secondary cracks in deposits of colloidal ellipsoids. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Bourrianne P, Lilin P, Sintès G, Nîrca T, McKinley GH, Bischofberger I. Crack morphologies in drying suspension drops. SOFT MATTER 2021; 17:8832-8837. [PMID: 34546264 DOI: 10.1039/d1sm00832c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A drop of an aqueous suspension of nanoparticles placed on a substrate forms a solid deposit as it dries. For dilute suspensions, particles accumulate within a narrow ring at the drop edge, whereas a uniform coating covering the entire wetted area forms for concentrated suspensions. In between these extremes, we report two additional regimes characterized by non-uniform deposit thicknesses and by distinct crack morphologies. We show that both the deposit shape and the number of cracks are controlled exclusively by the initial particle volume fraction. The different regimes share a common avalanche-like crack propagation dynamics, as a result of the delamination of the deposit from the substrate.
Collapse
Affiliation(s)
- Philippe Bourrianne
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Paul Lilin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Guillaume Sintès
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Traian Nîrca
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Irmgard Bischofberger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
The Effect of Substrate Temperature on the Evaporative Behaviour and Desiccation Patterns of Foetal Bovine Serum Drops. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The drying of bio-fluid drops results in the formation of complex patterns, which are morphologically and topographically affected by environmental conditions including temperature. We examine the effect of substrate temperatures between 20 °C and 40 °C, on the evaporative dynamics and dried deposits of foetal bovine serum (FBS) drops. The deposits consist of four zones: a peripheral protein ring, a zone of protein structures, a protein gel, and a central crystalline zone. We investigate the link between the evaporative behaviour, final deposit volume, and cracking. Drops dried at higher substrate temperatures in the range of 20 °C to 35 °C produce deposits of lower final volume. We attribute this to a lower water content and a more brittle gel in the deposits formed at higher temperatures. However, the average deposit volume is higher for drops dried at 40 °C compared to drops dried at 35 °C, indicating protein denaturation. Focusing on the protein ring, we show that the ring volume decreases with increasing temperature from 20 °C to 35 °C, whereas the number of cracks increases due to faster water evaporation. Interestingly, for deposits of drops dried at 40 °C, the ring volume increases, but the number of cracks also increases, suggesting an interplay between water evaporation and increasing strain in the deposits due to protein denaturation.
Collapse
|
18
|
Lama H, Gogoi T, Basavaraj MG, Pauchard L, Satapathy DK. Synergy between the crack pattern and substrate elasticity in colloidal deposits. Phys Rev E 2021; 103:032602. [PMID: 33862708 DOI: 10.1103/physreve.103.032602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/05/2021] [Indexed: 11/07/2022]
Abstract
Desiccation cracks in colloidal deposits occur to release the excess strain energy arising from the competition between the drying induced shrinkage of the deposit and its adhesion to the substrate. Here we report remarkably different morphology of desiccation cracks in the dried patterns formed by the evaporation of sessile drops containing colloids on elastomer (soft) or glass (stiff) substrates. The change in the crack pattern, i.e., from radial cracks on stiff substrates to circular cracks on soft substrates, is shown to arise solely due to the variation in elasticity of the underlying substrates. Our experiments and calculations reveal an intricate correlation between the desiccation crack patterns and the substrate's elasticity. The mismatch in modulus of elasticity between the substrate and that of the particulate deposit significantly alters the energy release rate during the nucleation and propagation of cracks. The stark variation in crack morphology is attributed to the tensile or compressive nature of the drying-induced in-plane stresses.
Collapse
Affiliation(s)
- Hisay Lama
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai-600036, India.,Department of Chemical Engineering, IIT Madras, Chennai-600036, India.,IBS Center for Soft and Living Matter, UNIST, Ulsan-44919, South Korea
| | - Tonmoy Gogoi
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai-600036, India
| | | | - Ludovic Pauchard
- Laboratoire FAST, Université Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai-600036, India
| |
Collapse
|
19
|
Parthasarathy D, Thampi SP, Ravindran P, Basavaraj MG. Further Insights into Patterns from Drying Particle Laden Sessile Drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4395-4402. [PMID: 33797915 DOI: 10.1021/acs.langmuir.1c00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The evaporation of colloidal dispersions is an elegant and straightforward route to controlled self-assembly of particles on a solid surface. In particular, the evaporation of particle laden drops placed on solid substrates has received considerable attention for more than two decades. Such particle filled drops upon complete evaporation of the solvent leave behind a residue, commonly called particulate deposit pattern. In these patterns, typically, more particles accumulate at the edge compared to the interior, a feature observed when coffee drops evaporate. Consequently, such evaporative patterns are called coffee stains. In this article, the focus is on the evaporation of highly dilute suspension drops containing particles of larger diameters ranging from 3 to 10 μm drying on solid substrates. This helps us to investigate the combined role of gravity-driven settling of particles and capillary flow-driven particle transport on pattern formation in drying drops. In the highly dilute concentration limit, the evaporative patterns are found to show a transition, from a monolayer deposit that consists of a single layer of particles, to a multilayer deposit as a function of particle diameter and initial concentration of particles in the drying drop. Moreover, the spatial distribution of particles as well as the ordering of particles in the deposit patterns are found to be particle size dependent. It is also seen that the order-disorder transition, a feature associated with the organization of particles at the edge of the deposit, observed typically at moderate particle concentrations, disappears at the highly dilute concentrations considered here. The evaporation of drops containing particles of 10 μm diameter, where the effect of gravity on the particle becomes significant, leads to uniform deposition of particles, i.e, suppression of the coffee-stain effect and to the formation of two-dimensional percolating networks.
Collapse
Affiliation(s)
- Dinesh Parthasarathy
- Polymer Engineering and Colloid Science(PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Sumesh P Thampi
- Polymer Engineering and Colloid Science(PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Parag Ravindran
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science(PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
20
|
Kumar PL, Thampi SP, Basavaraj MG. Particle size and substrate wettability dependent patterns in dried pendant drops. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:024003. [PMID: 33055378 DOI: 10.1088/1361-648x/abb64e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The particle laden sessile drops when dried on solid surfaces under certain conditions leave a deposit pattern wherein all the particles are confined to a narrow region close to the edge of the deposit. Such patterns which often form when coffee drops dry are referred to as the coffee ring patterns or the coffee stains. Recent research points to the formation of intriguing patterns when colloidal particle laden drops are dried in configurations other than sessile mode. In this article, the combined effect of particle size and wettability of the substrate on the patterns formed by drying drops in sessile and pendant configurations is investigated via experiments. Our results demonstrate a transition from coffee ring to central dome-like deposit morphology with decrease in wettability of the substrates when drops containing 3 μm diameter particles are dried in pendent mode. A similar transition in the deposit morphology is observed with increase in the diameter of the particles in pendant drops dried on substrates of near neutral wettability (θ = 86 ± 3°). The influence of particles size, substrate wettability and drop configuration on the kinetics of deposition of particles at the three phase contact line will also be discussed. We compare our experimental observations with particle based simulations wherein the dried patterns are generated by accounting for three particle transport modes, namely, advective particle transport resulting from capillary flow, gravity driven settling of particles and particle capture by descending interface.
Collapse
Affiliation(s)
- P Logesh Kumar
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
| | - Sumesh P Thampi
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
| |
Collapse
|
21
|
Jung J, Kim KK, Suh YD, Hong S, Yeo J, Ko SH. Recent progress in controlled nano/micro cracking as an alternative nano-patterning method for functional applications. NANOSCALE HORIZONS 2020; 5:1036-1049. [PMID: 32469038 DOI: 10.1039/d0nh00241k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Generally, cracking occurs for many reasons connected to uncertainties and to the non-uniformity resulting from intrinsic deficiencies in materials or the non-linearity of applied external (thermal, mechanical, etc.) stresses. However, recently, an increased level of effort has gone into analyzing the phenomenon of cracking and also into methods for controlling it. Sophisticated manipulation of cracking has yielded various cutting-edge technologies such as transparent conductors, mechanical sensors, microfluidics, and energy devices. In this paper, we present some of the recent progress that has been made in controlling cracking by giving an overview of the fabrication methods and working mechanisms used for various mediums. In addition, we discuss recent progress in the various applications of methods that use controlled cracking as an alternative to patterning tools.
Collapse
Affiliation(s)
- Jinwook Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
22
|
Lama H, Satapathy DK, Basavaraj MG. Modulation of Central Depletion Zone in Evaporated Sessile Drops via Substrate Heating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4737-4744. [PMID: 32259450 DOI: 10.1021/acs.langmuir.0c00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, we report the influence of substrate temperature (Tsub) on the evaporation driven patterning of colloids on solid substrates. When the drops are dried in an environment maintained at temperature, Tenv, lower than Tsub, the temperature difference between the drop apex and the three-phase contact line leads to thermal Marangoni flow. We show that the interplay between the radial capillary flow, the thermal Marangoni flow, and the descending rate of the drop surface can be tuned to modulate the spatial distribution of colloids in the dried deposits. At ΔT (=Tsub - Tenv) ≥ 45 °C, the distribution of particles in the interior region of the pattern is nearly uniform with a significant decrease in concentration of particles in the ring-like deposit at the edge. The deposits formed at 15 °C ≤ ΔT ≤ 40 °C are accompanied by a particle depleted zone in the center, which has not been reported to date. The formation of the central depletion zone arises from the suppression of the thermal Marangoni flow at the penultimate stage of drying and the interplay between the radial capillary flow and the descending rate of the drop surface. At ΔT < 15 °C, the dried deposits are found to exhibit coffee-ring-like stains.
Collapse
Affiliation(s)
- Hisay Lama
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai-600036, India
- PECS Laboratory, Department of Chemical Engineering, IIT Madras, Chennai-600036, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai-600036, India
| | - Madivala G Basavaraj
- PECS Laboratory, Department of Chemical Engineering, IIT Madras, Chennai-600036, India
| |
Collapse
|
23
|
Menachery A, Vembadi A, Brimmo A, Qasaimeh MA. Electrically Actuated Concentration of Microparticles through Levitation and Convective Flows in Evaporating Droplets. ACS APPLIED BIO MATERIALS 2020; 3:1845-1852. [DOI: 10.1021/acsabm.0c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anoop Menachery
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Abhishek Vembadi
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ayoola Brimmo
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Mohammad A. Qasaimeh
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, New York 11201, United States
| |
Collapse
|
24
|
Malla LK, Bhardwaj R, Neild A. Colloidal deposit of an evaporating sessile droplet on a non-uniformly heated substrate. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Mondal R, Basavaraj MG. Influence of the drying configuration on the patterning of ellipsoids - concentric rings and concentric cracks. Phys Chem Chem Phys 2019; 21:20045-20054. [PMID: 31478535 DOI: 10.1039/c9cp03008e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaporation of colloidal dispersions leading to patterning of particles is a simple and elegant route for controlling the self-assembly of particles on a solid surface. In this article, we demonstrate that the configuration in which a colloidal dispersion is dried greatly influences the patterning of particles on a solid surface after complete evaporation of the solvent. Evaporation experiments are carried out using well-characterized stable aqueous dispersions of hematite ellipsoids and polystyrene spheres. The drying of particle laden sessile drops always give a "coffee-ring" deposit irrespective of the particle concentration. At a particle concentration ≥0.3 wt% circular cracks appear in the annular region of the coffee-ring deposit owing to the ordered arrangement of ellipsoids. In stark contrast, the deposits formed by drying the dispersion of ellipsoids in the sphere-on-plate configuration show a transition from "concentric rings" to "concentric cracks" in the micro-structure of the particulate film with an increase in the concentration of particles. Further, our experimental findings reveal that long-range circular cracks and long-range assemblies of particles can be achieved by drying of the dispersion in the sphere-on-plate configuration. While the nature of patterns - that is - coffee-rings and concentric rings - is independent of the shape of the particles, a strikingly different crack morphology is shown to be dictated by the shape of the particles in the dispersion. The results presented show that the drying of colloidal dispersions in the sphere-on-plate configuration enables the fabrication of a long range ordered assembly of particles over an area as large as few square millimeters.
Collapse
Affiliation(s)
- Ranajit Mondal
- Polymer Engineering and Colloid Science Laboratory (PECS Lab), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | | |
Collapse
|
26
|
Malla LK, Bhardwaj R, Neild A. Analysis of profile and morphology of colloidal deposits obtained from evaporating sessile droplets. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Lee JG, Porter V, Shelton WA, Bharti B. Magnetic Field-Driven Convection for Directed Surface Patterning of Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15416-15424. [PMID: 30421934 DOI: 10.1021/acs.langmuir.8b03232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Drying sessile droplets is a promising route to transform colloidal dispersions into surface coatings, which are widely used in material design and biochemical detection. However, directing the assembly of the particles within drying droplets and achieving surface patterns beyond the well-known coffee-ring formation remain a challenge. Here, we present a new principle of directing the assembly of nonmagnetic colloidal particles dispersed in a magnetic fluid and generating unusual surface patterns. We use the ability of ferrofluids to change phases with the application of magnetic fields to program the assembly of nonmagnetic microparticles present in drying sessile droplets. We show that in the absence of external magnetic field, the superparamagnetic nanoparticles in the magnetic fluid are spontaneously transported to the droplet edge because of solvent evaporation. This nanoparticle transport leads to the formation of nanoparticle-rich edge and nanoparticle-depleted center of the drying droplet. Upon the application of a uniform external magnetic field, the asymmetry in the magnetic nanoparticle distribution drives a magnetostatic convection and finger-like instability from the droplet edge to the center. This magnetic microconvection from droplet edge-to-center reverses the particle transport from center-to-edge, well-known for drying droplets in the absence of external field. We use this magnetostatic microconvection to assemble secondary nonmagnetic microspheres in droplets, overwriting ring formation and direct their assembly into four distinct kinetically stable states. The method presented here offers an active control over the colloidal assembly achieved by drying sessile droplets and thus enables a new route for fabricating complex patterns and functional surface coating.
Collapse
Affiliation(s)
| | - Vanel Porter
- Department of Chemical Engineering , University of Louisiana , Lafayette 70503 , Louisiana , United States
| | | | | |
Collapse
|
28
|
Cracks in dried deposits of hematite ellipsoids: Interplay between magnetic and hydrodynamic torques. J Colloid Interface Sci 2018; 510:172-180. [DOI: 10.1016/j.jcis.2017.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022]
|