Surveying membrane landscapes: a new look at the bacterial cell surface.
Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID:
36828896 DOI:
10.1038/s41579-023-00862-w]
[Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse