1
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
2
|
Cai PC, Krajina BA, Kratochvil MJ, Zou L, Zhu A, Burgener EB, Bollyky PL, Milla CE, Webber MJ, Spakowitz AJ, Heilshorn SC. Dynamic light scattering microrheology for soft and living materials. SOFT MATTER 2021; 17:1929-1939. [PMID: 33427280 PMCID: PMC7938343 DOI: 10.1039/d0sm01597k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a method for using dynamic light scattering in the single-scattering limit to measure the viscoelastic moduli of soft materials. This microrheology technique only requires a small sample volume of 12 μL to measure up to six decades in time of rheological behavior. We demonstrate the use of dynamic light scattering microrheology (DLSμR) on a variety of soft materials, including dilute polymer solutions, covalently-crosslinked polymer gels, and active, biological fluids. In this work, we detail the procedure for applying the technique to new materials and discuss the critical considerations for implementing the technique, including a custom analysis script for analyzing data output. We focus on the advantages of applying DLSμR to biologically relevant materials: breast cancer cells encapsulated in a collagen gel and cystic fibrosis sputum. DLSμR is an easy, efficient, and economical rheological technique that can guide the design of new polymeric materials and facilitate the understanding of the underlying physics governing behavior of naturally derived materials.
Collapse
Affiliation(s)
- Pamela C Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Brad A Krajina
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Michael J Kratochvil
- Department of Materials Science, Stanford University, Stanford, CA 94305, USA. and Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Lei Zou
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Audrey Zhu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA. and Department of Materials Science, Stanford University, Stanford, CA 94305, USA. and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA and Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Cheng LC, Kuei Vehusheia SL, Doyle PS. Tuning Material Properties of Nanoemulsion Gels by Sequentially Screening Electrostatic Repulsions and Then Thermally Inducing Droplet Bridging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3346-3355. [PMID: 32216359 PMCID: PMC7311086 DOI: 10.1021/acs.langmuir.0c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Nanoemulsions are widely used in applications such as food products, cosmetics, pharmaceuticals, and enhanced oil recovery for which the ability to engineer material properties is desirable. Moreover, nanoemulsions are emergent model colloidal systems because of the ease in synthesizing monodisperse samples, flexibility in formulations, and tunable material properties. In this work, we study a nanoemulsion system previously developed by our group in which gelation occurs through thermally induced polymer bridging of droplets. We show here that the same system can undergo a sol-gel transition at room temperature through the addition of salt, which screens the electrostatic interaction and allows the system to assemble via depletion attraction. We systematically study how the addition of salt followed by a temperature jump can influence the resulting microstructures and rheological properties of the nanoemulsion system. We show that the salt-induced gel at room temperature can dramatically restructure when the temperature is suddenly increased and achieves a different gelled state. Our results offer a route to control the material properties of an attractive colloidal system by carefully tuning the interparticle potentials and sequentially triggering the colloidal self-assembly. The control and understanding of the material properties can be used for designing hierarchically structured hydrogels and complex colloid-based materials for advanced applications.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Patrick S. Doyle
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Cheng LC, Hashemnejad SM, Zarket B, Muthukrishnan S, Doyle PS. Thermally and pH-responsive gelation of nanoemulsions stabilized by weak acid surfactants. J Colloid Interface Sci 2020; 563:229-240. [DOI: 10.1016/j.jcis.2019.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
|
5
|
Kass L, Cardenas‐Vasquez ED, Hsiao LC. Composite double network hydrogels with thermoresponsive colloidal nanoemulsions. AIChE J 2019. [DOI: 10.1002/aic.16817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lauren Kass
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh
| | | | - Lilian C. Hsiao
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh
| |
Collapse
|
6
|
Cheng LC, Sherman ZM, Swan JW, Doyle PS. Colloidal Gelation through Thermally Triggered Surfactant Displacement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9464-9473. [PMID: 31298032 DOI: 10.1021/acs.langmuir.9b00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colloidal systems that undergo gelation attract much attention in both fundamental studies and practical applications. Rational tuning of interparticle interactions allows researchers to precisely engineer colloidal material properties and microstructures. Here, contrary to the traditional approaches where modulating attractive interactions is the major focus, we present a platform wherein colloidal gelation is controlled by tuning repulsive interactions. By including amphiphilic oligomers in colloidal suspensions, the ionic surfactants on the colloids are replaced by the nonionic oligomer surfactants at elevated temperatures, leading to a decrease in electrostatic repulsion. The mechanism is examined by carefully characterizing the colloids, and subsequently allowing the construction of interparticle potentials to capture the material behaviors. With the thermally triggered surfactant displacement, the dispersion assembles into a macroporous viscoelastic network and the gelling mechanism is robust over a wide range of compositions, colloid sizes, and component chemistries. This stimulus-responsive gelation platform is general and offers new strategies to engineer complex viscoelastic soft materials.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Zachary M Sherman
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - James W Swan
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Patrick S Doyle
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
7
|
Unveiling Temporal Nonlinear Structure-Rheology Relationships under Dynamic Shearing. Polymers (Basel) 2019; 11:polym11071189. [PMID: 31315259 PMCID: PMC6680679 DOI: 10.3390/polym11071189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
Understanding how microscopic rearrangements manifest in macroscopic flow responses is one of the central goals of nonlinear rheological studies. Using the sequence-of-physical-processes framework, we present a natural 3D structure–rheology space that temporally correlates the structural and nonlinear viscoelastic parameters. Exploiting the rheo-small-angle neutron scattering (rheo-SANS) techniques, we demonstrate the use of the framework with a model system of polymer-like micelles (PLMs), where we unveil a sequence of microscopic events that micelles experience under dynamic shearing across a range of frequencies. The least-aligned state of the PLMs is observed to migrate from the total strain extreme toward zero strain with increasing frequency. Our proposed 3D space is generic, and can be equally applied to other soft materials under any sort of deformation, such as startup shear or uniaxial extension. This work therefore provides a natural approach for researchers to study complex out-of-equilibrium structure–rheology relationships of soft materials.
Collapse
|
8
|
Geonzon LC, Matsukawa S. Accuracy improvement of centroid coordinates and particle identification in particle tracking technique. ACTA ACUST UNITED AC 2019. [DOI: 10.17106/jbr.33.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Lester C. Geonzon
- Graduate School of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Shingo Matsukawa
- Graduate School of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
9
|
|
10
|
Wehrman MD, Lindberg S, Schultz KM. Multiple particle tracking microrheology measured using bi-disperse probe diameters. SOFT MATTER 2018; 14:5811-5820. [PMID: 29974108 DOI: 10.1039/c8sm01098f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiple particle tracking microrheology (MPT) is a powerful tool for quantitatively characterizing rheological properties of soft matter. Traditionally, MPT uses a single particle size to characterize rheological properties. But in complex systems, MPT measurements with a single size particle can characterize distinct properties that are linked to the materials' length scale dependent structure. By varying the size of probes, MPT can measure the properties associated with different length scales within a material. We develop a technique to simultaneously track a bi-disperse population of probe particles. 0.5 and 2 μm particles are embedded in the same sample and these particle populations are tracked separately using a brightness-based squared radius of gyration, Rg2. Bi-disperse MPT is validated by measuring the viscosity of glycerol samples at varying concentrations. Bi-disperse MPT measurements agree well with literature values. This technique then characterizes a homogeneous poly(ethylene glycol)-acrylate:poly(ethylene glycol)-dithiol gelation. The critical relaxation exponent and critical gelation time are consistent and agree with previous measurements using a single particle. Finally, degradation of a heterogeneous hydrogenated castor oil colloidal gel is characterized. The two particle sizes measure a different value of the critical relaxation exponent, indicating that they are probing different structures. Analysis of material heterogeneity shows measured heterogeneity is dependent on probe size indicating that each particle is measuring rheological evolution of a length scale dependent structure. Overall, bi-disperse MPT increases the amount of information gained in a single measurement, enabling more complete characterization of complex systems that range from consumer care products to biological materials.
Collapse
Affiliation(s)
- Matthew D Wehrman
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA.
| | | | | |
Collapse
|
11
|
Cheng LC, Godfrin PD, Swan JW, Doyle PS. Thermal processing of thermogelling nanoemulsions as a route to tune material properties. SOFT MATTER 2018; 14:5604-5614. [PMID: 29923590 DOI: 10.1039/c8sm00814k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many soft matter systems have properties which depend on their processing history. It is generally accepted that material properties can be finely tuned by carefully directing self-assembly. However, for gelling colloidal systems, it is difficult to characterize such path-dependent effects since the colloidal attraction is often provided by adding another component to the system such as salts or depletants. Therefore, studies of and an understanding of the role of processing on the material properties of attractive colloidal systems are largely lacking. In this work, we systematically studied how processing greatly influences the properties and the microstructures of model attractive colloidal systems. We perform experiments using a thermogelling nanoemulsion as a model system where the isotropic attraction can be precisely tuned via the temperature. The effects of processing conditions on gel formation and properties is tested by performing well-designed sequential temperature jumps. By properly controlling the thermal history, we demonstrate that properties of colloidal gels can be beyond the limit set by direct quenching, which has been a major focus in literature, and that otherwise slow aging of the system associated with a decrease in elasticity can be prevented. Our results provide new experimental evidence of path-dependent rheology and associated microstructures in attractive colloidal systems and provide guidance to future applications in manufacturing complex colloid-based materials.
Collapse
Affiliation(s)
- Li-Chiun Cheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
12
|
Papagiannopoulos A, Zhao J, Zhang G, Pispas S, Jafta CJ. Viscosity Transitions Driven by Thermoresponsive Self-Assembly in PHOS-g-P(PO-r-EO) Brush Copolymer. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People’s Republic of China
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Charl J. Jafta
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn Meitner Platz 1, 14109 Berlin, Germany
| |
Collapse
|