1
|
Te Vrugt M, Topp L, Wittkowski R, Heuer A. Microscopic derivation of the thin film equation using the Mori-Zwanzig formalism. J Chem Phys 2024; 161:094904. [PMID: 39225531 DOI: 10.1063/5.0217535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The hydrodynamics of thin films is typically described using macroscopic models whose connection to the microscopic particle dynamics is a subject of ongoing research. Existing methods based on density functional theory provide a good description of static thin films but are not sufficient for understanding nonequilibrium dynamics. In this work, we present a microscopic derivation of the thin film equation using the Mori-Zwanzig projection operator formalism. This method allows to directly obtain the correct gradient dynamics structure along with microscopic expressions for mobility and free energy. Our results are verified against molecular dynamics simulations for both simple fluids and polymers.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Leon Topp
- Institute of Physical Chemistry, Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, Universität Münster, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, Universität Münster, 48149 Münster, Germany
| |
Collapse
|
2
|
Alston H, Parry AO, Voituriez R, Bertrand T. Intermittent attractive interactions lead to microphase separation in nonmotile active matter. Phys Rev E 2022; 106:034603. [PMID: 36266896 DOI: 10.1103/physreve.106.034603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Nonmotile active matter exhibits a wide range of nonequilibrium collective phenomena yet examples are crucially lacking in the literature. We present a microscopic model inspired by the bacteria Neisseria meningitidis in which diffusive agents feel intermittent attractive forces. Through a formal coarse-graining procedure, we show that this truly scalar model of active matter exhibits the time-reversal-symmetry breaking terms defining the Active Model B+ class. In particular, we confirm the presence of microphase separation by solving the kinetic equations numerically. We show that the switching rate controlling the interactions provides a regulation mechanism tuning the typical cluster size, e.g., in populations of bacteria interacting via type IV pili.
Collapse
Affiliation(s)
- Henry Alston
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| | - Andrew O Parry
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
- Laboratoire Jean Perrin, UMR 8237 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| |
Collapse
|
3
|
Zhao L, Seshadri S, Liang X, Bailey SJ, Haggmark M, Gordon M, Helgeson ME, Read de Alaniz J, Luzzatto-Fegiz P, Zhu Y. Depinning of Multiphase Fluid Using Light and Photo-Responsive Surfactants. ACS CENTRAL SCIENCE 2022; 8:235-245. [PMID: 35233455 PMCID: PMC8875439 DOI: 10.1021/acscentsci.1c01127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 05/03/2023]
Abstract
The development of noninvasive and robust strategies for manipulation of droplets and bubbles is crucial in applications such as boiling and condensation, electrocatalysis, and microfluidics. In this work, we realize the swift departure of droplets and bubbles from solid substrates by introducing photoresponsive surfactants and applying asymmetric illumination, thereby inducing a "photo-Marangoni" lift force. Experiments show that a pinned toluene droplet can depart the substrate in only 0.38 s upon illumination, and the volume of an air bubble at departure is reduced by 20%, indicating significantly faster departure. These benefits can be achieved with moderate light intensities and dilute surfactant concentrations, without specially fabricated substrates, which greatly facilitates practical applications. Simulations suggest that the net departure force includes contributions from viscous stresses directly caused by the Marangoni flow, as well as from pressure buildup due to flow stagnation at the contact line. The manipulation scheme proposed here shows potential for applications requiring droplet and bubble removal from working surfaces.
Collapse
Affiliation(s)
- Lei Zhao
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Serena Seshadri
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Xichen Liang
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Sophia J. Bailey
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Michael Haggmark
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Michael Gordon
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Matthew E. Helgeson
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Javier Read de Alaniz
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Paolo Luzzatto-Fegiz
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Yangying Zhu
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106-5070, United States
| |
Collapse
|
4
|
Nguindjel AC, Korevaar PA. Self‐Sustained Marangoni Flows Driven by Chemical Reactions**. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Déborah C. Nguindjel
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| |
Collapse
|
5
|
Grawitter J, Stark H. Steering droplets on substrates using moving steps in wettability. SOFT MATTER 2021; 17:2454-2467. [PMID: 33492322 DOI: 10.1039/d0sm02082f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplets move on substrates with a spatio-temporal wettability pattern as generated, for example, on light-switchable surfaces. To study such cases, we implement the boundary-element method to solve the governing Stokes equations for the fluid flow field inside and on the surface of a droplet and supplement it by the Cox-Voinov law for the dynamics of the contact line. Our approach reproduces the relaxation of an axisymmetric droplet in experiments, which we initiate by instantaneously switching the uniform wettability of a substrate quantified by the equilibrium contact angle. In a step profile of wettability the droplet moves towards higher wettability. Using a feedback loop to keep the distance or offset between step and droplet center constant, induces a constant velocity with which the droplet surfs on the wettability step. We analyze the velocity in terms of droplet offset and step width for typical wetting parameters. Moving instead the wettability step with constant speed, we determine the maximally possible droplet velocities under various conditions. The observed droplet speeds agree with the values from the feedback study for the same positive droplet offset.
Collapse
Affiliation(s)
- Josua Grawitter
- Technische Universität Berlin, Institut für Theoretische Physik, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Holger Stark
- Technische Universität Berlin, Institut für Theoretische Physik, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
6
|
Zakine R, Fournier JB, van Wijland F. Spatial organization of active particles with field-mediated interactions. Phys Rev E 2020; 101:022105. [PMID: 32168677 DOI: 10.1103/physreve.101.022105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 11/07/2022]
Abstract
We consider a system of independent pointlike particles performing a Brownian motion while interacting with a Gaussian fluctuating background. These particles are in addition endowed with a discrete two-state internal degree of freedom that is subjected to a nonequilibrium source of noise, which affects their coupling with the background field. We explore the phase diagram of the system and pinpoint the role of the nonequilibrium drive in producing a nontrivial patterned spatial organization. We are able, by means of a weakly nonlinear analysis, to account for the parameter-dependence of the boundaries of the phase and pattern diagram in the stationary state.
Collapse
Affiliation(s)
- Ruben Zakine
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Jean-Baptiste Fournier
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
7
|
Mokbel M, Schwarzenberger K, Aland S, Eckert K. Information transmission by Marangoni-driven relaxation oscillations at droplets. SOFT MATTER 2018; 14:9250-9262. [PMID: 30418455 DOI: 10.1039/c8sm01720d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Marangoni-driven relaxation oscillations can be observed in many systems where concentration gradients of surface-active substances exist. In the present paper, we describe the experimentally observed coupling between relaxation oscillations at neighboring droplets in a concentration gradient. By a numerical parameter study, we evaluate the oscillation characteristics depending on relevant material parameters and the pairwise droplet distance. Based on these findings, we demonstrate that hydrodynamic interaction in multidroplet configurations can lead to a synchronization of the oscillations over the whole ensemble. This effect has the potential to be used as a novel approach for information transmission in microfluidic applications.
Collapse
Affiliation(s)
- Marcel Mokbel
- Faculty of Informatics/Mathematics, HTW Dresden, 01069 Dresden, Germany
| | | | | | | |
Collapse
|