1
|
Shah B, Singh N, Jang DO. Development of Biginelli-based ZnO-coupled carbomer-gel-coated wound dressing gauze with enhanced antibacterial activity. RSC Adv 2025; 15:11215-11229. [PMID: 40206355 PMCID: PMC11979746 DOI: 10.1039/d5ra00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
A multicomponent Biginelli reaction was used to produce biologically active dihydropyrimidones that were then combined with ZnO nanoparticles. Biginelli compounds synthesized with various alkyl chains were characterized using high-resolution mass spectrometry as well as 1H- and 13C-NMR spectroscopy. Efficient antibacterial gels were developed by introducing the prepared Biginelli compounds and ZnO nanoparticles into a carbomer polymer matrix. Antibacterial screening revealed that the ABS-G4 gel exhibited the highest antibacterial potential, with minimum inhibitory concentrations of 16 ± 2 and 12 ± 2 μg mL-1 against Escherichia coli and Staphylococcus aureus, respectively. The ABS-G4 gel was characterized using rheological studies, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction, and atomic force microscopy. The ABS-G4 gel was showing more antibacterial efficacy toward Gram-positive strains of bacteria than Gram-positive ones. An antibacterial dressing was formed by coating the developed gel onto a gauze dressing.
Collapse
Affiliation(s)
- Bulle Shah
- Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Doo Ok Jang
- Department of Chemistry, Yonsei University Wonju 26493 Republic of Korea
| |
Collapse
|
2
|
He Y, Chen J, Xu Z, Nie J, Wang F, Ma C, Wang C, Zhang L, Lu C. Silver functionalized chitosan composite hydrogel with sustained silver release and enhanced antibacterial properties promotes healing of infected wounds. Int J Biol Macromol 2024; 285:138290. [PMID: 39631613 DOI: 10.1016/j.ijbiomac.2024.138290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Bacterial infections during wound healing often cause inflammation, which delays the healing process. Therefore, innovative wound dressings are urgently needed to inhibit bacterial infections and promote healing. This study proposes an Ag-functionalized chitosan hydrogel dressing, formed via a Schiff-base reaction between alkynyl Ag substituted chitosan (Ag-CS) and octafunctionalized polyhedral oligomeric silsesquioxane with benzaldehyde-terminated polyethylene glycol (POSS-PEG-CHO), to address the issue of bacterial infection in wounds. The hydrogel demonstrated excellent injectability and self-healing properties. AgNPs and alkynyl Ag, produced by the reducing effect of chitosan and the reversible reaction of alkynyl Ag, delay the release of Ag+. Furthermore, the hydrogel exhibits a broad-spectrum antibacterial effect and effectively inhibits bacterial biofilm formation. The release of Ag+ lasts for 7 days, ensuring sustainable antibacterial properties. In a mouse infected wound model, the composite hydrogel significantly accelerated wound healing. By the eighth day, the wound healing rate reached 99 %, whereas the control group achieved only 91 %. Histological and immunofluorescence staining results indicated that hydrogel-treated wounds had faster re-epithelialization, collagen deposition, and angiogenesis, with reduced inflammation. In conclusion, the Ag-functionalized chitosan hydrogel, with sustained Ag release and enhanced antibacterial properties, shows great potential as a wound dressing for promoting the healing of infected wounds.
Collapse
Affiliation(s)
- Yingjie He
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Jing Chen
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, Wuhan No.1 Hospital, Wuhan 430022, China
| | - Zhao Xu
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, Wuhan No.1 Hospital, Wuhan 430022, China
| | - Junqi Nie
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Feiyi Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Chao Ma
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Zhang
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, Wuhan No.1 Hospital, Wuhan 430022, China.
| | - Cuifen Lu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
4
|
Zhang F, Yao Q, Niu Y, Chen X, Zhou H, Bai L, Kong Z, Li Y, Cheng H. In Situ Fabrication of Silver Nanoparticle-Decorated Polymeric Vesicles for Antibacterial Applications. ChemistryOpen 2024; 13:e202300223. [PMID: 38647351 PMCID: PMC11095202 DOI: 10.1002/open.202300223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Silver/polymeric vesicle composite nanoparticles with good antibacterial properties were fabricated in this study. Silver nanoparticles (AgNPs) were prepared in situ on cross-linked vesicle membranes through the reduction of silver nitrate (AgNO3) using polyvinylpyrrolidone (PVP) via coordination bonding between the Ag+ ions and the nitrogen atoms on the vesicles. X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), and transmission electron microscopy (TEM) analyses confirmed the formation of AgNPs on the vesicles. The antibacterial test demonstrated good antibacterial activity against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) for the produced AgNP-decorated vesicles. The minimum inhibitory concentration (MIC) values of the AgNP-decorated vesicles for E. coli and S. aureus were 8.4 and 9.6 μg/mL, respectively. Cell viability analysis on the A549 cells indicated that the toxicity was low when the AgNP concentrations did not exceed the MIC values, and the wound healing test confirmed the good antibacterial properties of the AgNP-decorated vesicles.
Collapse
Affiliation(s)
- Fen Zhang
- Institute of Energy ResourcesHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Qian Yao
- Institute of Energy ResourcesHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Yanling Niu
- Institute of Energy ResourcesHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Xiaoqi Chen
- Institute of Energy ResourcesHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Haijun Zhou
- Institute of Energy ResourcesHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Lu Bai
- Institute of Energy ResourcesHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Zejuan Kong
- Institute of BiologyHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Yantao Li
- Institute of Energy ResourcesHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| | - Hua Cheng
- Institute of BiologyHebei Academy of Sciences050081ShijiazhuangHebei ProvinceChina
| |
Collapse
|
5
|
Yang N, Sun M, Wang H, Hu D, Zhang A, Khan S, Chen Z, Chen D, Xie S. Progress of stimulus responsive nanosystems for targeting treatment of bacterial infectious diseases. Adv Colloid Interface Sci 2024; 324:103078. [PMID: 38215562 DOI: 10.1016/j.cis.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
In recent decades, due to insufficient concentration at the lesion site, low bioavailability and increasingly serious resistance, antibiotics have become less and less dominant in the treatment of bacterial infectious diseases. It promotes the development of efficient drug delivery systems, and is expected to achieve high absorption, targeted drug release and satisfactory therapy effects. A variety of endogenous stimulation-responsive nanosystems have been constructed by using special infection microenvironments (pH, enzymes, temperature, etc.). In this review, we firstly provide an extensive review of the current research progress in antibiotic treatment dilemmas and drug delivery systems. Then, the mechanism of microenvironment characteristics of bacterial infected lesions was elucidated to provide a strong theoretical basis for bacteria-targeting nanosystems design. In particular, the discussion focuses on the design principles of single-stimulus and dual-stimulus responsive nanosystems, as well as the use of endogenous stimulus-responsive nanosystems to deliver antimicrobial agents to target locations for combating bacterial infectious diseases. Finally, the challenges and prospects of endogenous stimulus-responsive nanosystems were summarized.
Collapse
Affiliation(s)
- Niuniu Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Huixin Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Danlei Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Suliman Khan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Bhattacharjee B, Ghosh S, Haldar J. Versatile and User-Friendly Anti-infective Hydrogel for Effective Wound Healing. ACS APPLIED BIO MATERIALS 2023; 6:4867-4876. [PMID: 37816154 DOI: 10.1021/acsabm.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Wound dressings play a crucial role in facilitating optimal wound healing and protecting against microbial infections. However, existing commercial options often fall short in addressing chronic infections due to antibiotic resistance and the limited spectrum of activity against both Gram-positive and Gram-negative bacteria frequently encountered at wound sites. Additionally, complex fabrication processes and cumbersome administration strategies pose challenges for cost-effective wound dressing development. Consequently, there is a pressing need to explore easily engineered biocompatible biomaterials as alternative solutions to combat these challenging wound infections. In this study, we present the development of an anti-infective hydrogel, P-BAC (polymeric bactericidal hydrogel), which exhibits simple administration and promotes efficient wound healing. P-BAC is synthesized via a one-step fabrication method that involves the noncovalent cross-linking of poly(vinyl alcohol), N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride-AgCl nanocomposite, and proline. Remarkably, P-BAC demonstrates broad-spectrum antibacterial activity against both planktonic and stationary cells of clinically isolated Gram-positive and Gram-negative bacteria, resulting in a significant reduction of bacterial load (5-7 log reduction). Moreover, P-BAC exhibits excellent efficacy in eradicating bacterial cells within biofilm matrices (>95% reduction). In vivo experiments reveal that P-BAC accelerates wound healing by stimulating rapid collagen deposition at the wound site and effectively inactivates ∼95% of Pseudomonas aeruginosa cells. Importantly, the shear-thinning property of P-BAC simplifies the administration process, enhancing its practicality and usability. Taken together, our findings demonstrate the potential of this easily administrable hydrogel as a versatile solution for effective wound healing with potent anti-infective properties. The developed hydrogel holds promise for applications in diverse healthcare settings, addressing the critical need for improved wound dressing materials.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
7
|
Xu J, Zhu X, Zhao J, Ling G, Zhang P. Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Adv Colloid Interface Sci 2023; 321:103000. [PMID: 37839280 DOI: 10.1016/j.cis.2023.103000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Supramolecular hydrogels bound by hydrogen bonding, host-guest, hydrophobic, and other non-covalent interactions are among the most attractive biomaterials available. Supramolecular hydrogels have attracted extensive attention due to their inherent dynamic reversibility, self-healing, stimuli-response, excellent biocompatibility, and near-physiological environment. However, the inherent contradiction between non-covalent interactions and mechanical strength makes the practical application of supramolecular hydrogels a great challenge. This review describes the mechanical strength of hydrogels mediated by supramolecular interactions, and focuses on the potential strategies for enhancing the mechanical strength of supramolecular hydrogels and illustrates their applications in related fields, such as flexible electronic sensors, wound dressings, and three-dimensional (3D) scaffolds. Finally, the current problems and future research prospects of supramolecular hydrogels are discussed. This review is expected to provide insights that will motivate more advanced research on supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| |
Collapse
|
8
|
Panwar V, Sharma A, Murugesan P, Salaria N, Ghosh D. Free-flowing, self-crosslinking, carboxymethyl starch and carboxymethyl cellulose microgels, as smart hydrogel dressings for wound repair. Int J Biol Macromol 2023; 246:125735. [PMID: 37423449 DOI: 10.1016/j.ijbiomac.2023.125735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Hydrogels are widely recognized and favoured as moist wound dressings due to their beneficial properties. However, their limited capacity to absorb fluids restricts their use in highly exuding wounds. Microgels are small sized hydrogels that have recently gained considerable attention in drug delivery applications due to their superior swelling behaviour and ease of application. In this study, we introduce dehydrated microgel particles (μGeld) that rapidly swell and interconnect, forming an integrated hydrogel when exposed to fluid. These free-flowing microgel particles, derived from the interaction of carboxymethylated forms of starch and cellulose, have been designed to significantly absorb fluid and release silver nanoparticles in order to effectively control infection. Studies using simulated wound models validated the microgels ability to efficiently regulate the wound exudate and create a moist environment. While the biocompatibility and hemocompatibility studies confirmed the safety of the μGel particles, its haemostatic property was established using relevant models. Furthermore, the promising results from a full-thickness wounds in rats have highlighted the enhanced healing potential of the microgel particles. These findings suggest that the dehydrated microgels can evolve as a new class of smart wound dressings.
Collapse
Affiliation(s)
- Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| | - Anjana Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Preethi Murugesan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
9
|
Omidian H, Chowdhury SD. Advancements and Applications of Injectable Hydrogel Composites in Biomedical Research and Therapy. Gels 2023; 9:533. [PMID: 37504412 PMCID: PMC10379998 DOI: 10.3390/gels9070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Injectable hydrogels have gained popularity for their controlled release, targeted delivery, and enhanced mechanical properties. They hold promise in cardiac regeneration, joint diseases, postoperative analgesia, and ocular disorder treatment. Hydrogels enriched with nano-hydroxyapatite show potential in bone regeneration, addressing challenges of bone defects, osteoporosis, and tumor-associated regeneration. In wound management and cancer therapy, they enable controlled release, accelerated wound closure, and targeted drug delivery. Injectable hydrogels also find applications in ischemic brain injury, tissue regeneration, cardiovascular diseases, and personalized cancer immunotherapy. This manuscript highlights the versatility and potential of injectable hydrogel nanocomposites in biomedical research. Moreover, it includes a perspective section that explores future prospects, emphasizes interdisciplinary collaboration, and underscores the promising future potential of injectable hydrogel nanocomposites in biomedical research and applications.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
10
|
Riaz M, Ajmal M, Naseem A, Jabeen N, Farooqi ZH, Mahmood K, Ali A, Rasheed L, Saqib ANS. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
Poly(N-isopropyl acrylamide-co-2-acrylamido methyl propane sulfonic acid) hydrogel was prepared and used as matrix for the fabrication of nickel and copper nanoparticles. Nickel and copper nanoparticles were fabricated via in situ reduction of Ni (II) and Cu (II) ions within the hydrogel matrix. The manufactured hydrogel and its corresponding composites with Ni and Cu nanoparticles were characterized by FTIR, XRD, EDX, TEM, and TGA. Thermal stability of hydrogel was found to be increased upon fabricating with metal nanoparticles. The hydrogel showed ability to absorb water 63 times of its weight in dried form. The Ni and Cu nanoparticles were observed to be well dispersed, spherical in shape and most of them were having diameters in the range of 12.5 to 38.8 nm and 58 to 102 nm, respectively. The as-prepared hydrogel-nickel and hydrogel-Cu nanocomposite were used as catalysts for the reduction of a toxic pollutant 4-nitrophenol. At 25 °C, the reduction of 4-NP was found to proceed with apparent rate constant (k
app) of 0.107 and 0.122 min−1 in the presence of composite containing Ni and Cu nanoparticles, respectively. However, k
app was increased with corresponding increase in temperature and its maximum value was found to be 0.815 min−1 at 88 °C with catalyst containing Ni nanoparticles. The formation of well dispersed Ni and Cu nanoparticles in the prepared hydrogel reflected that this hydrogel system can act as efficient stabilizing agent along with acting as a reactor medium. Recycling potential of catalysts was studied for five successive cycles.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Chemistry , University of Wah , Wah Cantt , Pakistan
| | - Muhammad Ajmal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Atif Naseem
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Nusrat Jabeen
- Department of Chemistry , University of Wah , Wah Cantt , Pakistan
| | - Zahoor H. Farooqi
- School of Chemistry , University of the Punjab, New Campus , Lahore , Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University , Multan , Pakistan
| | - Abid Ali
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | - Lubna Rasheed
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Ahmad Nauman Shah Saqib
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
11
|
Dadashi J, Ali Ghasemzadeh M, Alipour S, Zamani F. A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1817. [PMID: 35775611 PMCID: PMC9539467 DOI: 10.1002/wnan.1817] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
Abstract
Gold and silver nanoparticles (NPs) are widely used in the biomedical research both in the therapeutic and the sensing/diagnostics fronts. Both metals share some common optical properties with surface plasmon resonance being the most widely exploited property in therapeutics and diagnostics. Au NPs exhibit excellent light‐to‐heat conversion efficiencies and hence have found applications primarily in precision oncology, while Ag NPs have excellent antibacterial properties which can be harnessed in biomaterials' design. Both metals constitute excellent biosensing platforms owing to their plasmonic properties and are now routinely used in various optical platforms. The utilization of Au and Ag NPs in the COVID‐19 pandemic was rapidly expanded mostly in biosensing and point‐of‐care platforms and to some extent in therapeutics. In this review article, the main physicochemical properties of Au and Ag NPs are discussed with selective examples from the recent literature. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vitro Nanoparticle‐Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Collapse
Affiliation(s)
- George Pasparakis
- Department of Chemical Engineering University of Patras Patras Greece
| |
Collapse
|
13
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
14
|
Fu XK, Cao HB, An YL, Zhou HD, Shi YP, Hou GL, Ha W. Bioinspired Hydroxyapatite Coating Infiltrated with a Graphene Oxide Hybrid Supramolecular Hydrogel Orchestrates Antibacterial and Self-Lubricating Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31702-31714. [PMID: 35796026 DOI: 10.1021/acsami.2c07869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HA) bioceramic coating has been extensively applied for the modification of metallic implants to improve their biocompatibility and service life after implantation. Unfortunately, HA coating often suffers from high friction, severe wear, and bacterial invasion, which restrict its application in artificial joints. According to a bioinspired soft/hard combination strategy, a novel HA composite coating that is infiltrated with a vancomycin-loaded graphene oxide (GO) hybrid supramolecular hydrogel is developed via vacuum infiltration and a subsequent host-guest interaction-induced self-assembly process. The holes of textured HA ceramic coating act just like a "magic pocket", offering a stable container to form and store GO hybrid hydrogels and even to recycle wear debris as well. The drug-loaded hybrid hydrogels stored in textured HA coating possess a unique shear force and/or frictional heat triggered gel-sol transition and sustained drug release behavior, acting like the extrusion of synovial fluid during articular cartilage movement, leading to a remarkable self-lubrication, anti-wear performance, and promising antibacterial property against Staphylococcus aureus. The friction coefficient and wear rate of composite coating reduced by nearly five times and three orders of magnitude compared with textured HA coating, respectively, which benefited from the synergistic lubricate effect of cyclodextrin-based pseudopolyrotaxane supramolecular hydrogel and GO lubricants.
Collapse
Affiliation(s)
- Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao-Bo Cao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Long An
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Hui-Di Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Guo-Liang Hou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Zhang W, Wang X, Ma J, Yang R, Hu Y, Tan X, Chi B. Adaptive injectable carboxymethyl cellulose/poly (γ-glutamic acid) hydrogels promote wound healing. BIOMATERIALS ADVANCES 2022; 136:212753. [PMID: 35929335 DOI: 10.1016/j.bioadv.2022.212753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 03/05/2022] [Indexed: 12/22/2022]
Abstract
The clinical acceleration of skin autogenous healing remains a great challenge, especially in the early stage after injury. In this work, a novel directly injectable hydrogel with high self-adaptability is designed as a provisional matrix to close the apposition of wound edges, using carboxymethyl cellulose and poly (γ-glutamic acid) through Schiff-base reaction. Benefiting from the dynamic covalent cross-linking structure, the functional biodegradable hydrogels are easy to prepare (gel time 5-180 s), demonstrating adequate mechanical strength (40-120 kPa), anti-fatigue abilities, and rapid self-healing (5-10 min at skin defect). Furthermore, the hydrogels exhibit biocompatibility and proliferation-promoting activity with murine fibroblasts. In the full-thickness dermal animal models, it significantly promoted collagen deposition, skin-function restoration, and VEGF expression. This hydrogel shows potential as a dressing available for skin regeneration during the healing of dermal injuries.
Collapse
Affiliation(s)
- Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Juping Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
16
|
One-Step Preparation of Adhesive Composite Hydrogels through Fast and Simultaneous In Situ Formation of Silver Nanoparticles and Crosslinking. Gels 2022; 8:gels8050256. [PMID: 35621554 PMCID: PMC9141602 DOI: 10.3390/gels8050256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, a series of gelatin/silver nanoparticles (AgNPs) composite hydrogels are prepared for the first time through the facile in situ formation of AgNPs. AgNPs, which are formed by reducing Ag+ using dopamine-conjugated gelatins. These can simultaneously crosslink gelatin molecules, thus generating three-dimentional and porous hydrogels. The gelation time and pore sizes of these composite hydrogels can be controlled by controlling the feeding concentration of AgNO3 and weight content of gelatin in water, respectively. The feeding concentration of AgNO3 also has an effect on the equilibrium swelling ratio of the hydrogels. Moreover, these composite hydrogels, with a controllable gelation time and in situ forming ability, exhibit good adhesive properties and can be used as drug-release depots.
Collapse
|
17
|
Yu J, Cheng L, Jia Z, Han X, Xu H, Jiang J. Injectable Methylcellulose and Hyaluronic Acid Hydrogel Containing Silver Nanoparticles for Their Effective Anti-microbial and Wound Healing Activity After Fracture Surgery. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1330-1343. [DOI: 10.1007/s10924-021-02257-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 01/03/2025]
|
18
|
Ha W, Hou GL, Qin WJ, Fu XK, Zhao XQ, Wei XD, An YL, Shi YP. Supramolecular hydrogel-infiltrated ceramics composite coating with combined antibacterial and self-lubricating performance. J Mater Chem B 2021; 9:9852-9862. [PMID: 34704586 DOI: 10.1039/d1tb01830b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inspired by the structure and dynamic weeping lubricating mechanism of articular cartilage, a novel composite coating composed of a textured Y2O3-stabilized ZrO2 (YSZ) ceramics reservoir and silver nanoparticles (AgNPs) hybrid supramolecular hydrogel was developed on the basis of a soft/hard combination strategy. The precursor solution including the poly(ethylene glycol) (PEG)-modified AgNPs and α-cyclodextrins (α-CDs) could be infiltrated deep into (50-60 μm) the pores of a textured YSZ ceramics substrate by a vacuum infiltration method, in situ forming a supramolecular hydrogel within the pores through host-guest inclusion between α-CDs and PEG chains distributed onto the surface of AgNPs. The AgNPs hybrid hydrogel showed thixotropic and thermoresponsive gel-sol transition behavior, low cytotoxicity, and excellent drug-loading capacity, as well as significant antibacterial properties. The textured YSZ ceramics not only provided a hard supporting skeleton and stable reservoir to protect the supramolecular hydrogel from destruction under load-bearing or shear condition, but also allowed retaining the stimuli-responsive gel-sol transition property and drug-release capability of the infiltrated hydrogel, endowing the composite coating with excellent antibacterial properties, and self-lubrication and wear-resistance performance. The composite coating in this work brings a new insight into the design of antibacterial and self-lubricating ceramic coatings for artificial joint applications.
Collapse
Affiliation(s)
- Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Guo-Liang Hou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Wu-Jun Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Qin Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Dong Wei
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Yu-Long An
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| |
Collapse
|
19
|
Shi W, Kong Y, Su Y, Kuss MA, Jiang X, Li X, Xie J, Duan B. Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties. J Mater Chem B 2021; 9:7182-7195. [PMID: 33651063 DOI: 10.1039/d1tb00156f] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to their intrinsic injectable and self-healing characteristics, dynamic hydrogels, based on dynamic covalent bonds, have gained a great attention. In this study, a novel dynamic hydrogel based on the boronic ester dynamic covalent bond is facilely developed using phenylboronic acid-modified hyaluronic acid (HA-PBA) and plant-derived polyphenol-tannic acid (TA). The dynamic hydrogel gelated quickly under mild conditions and had favorable viscoelastic properties with good self-healing and shear-thinning capabilities. Moreover, the simultaneous utilization of TA as a reductant for the green synthesis of silver nanoparticles (AgNP) inspired the preparation of a TA-reduced AgNP hybrid dynamic hydrogel with potent and broad-spectrum antibacterial activities. The dynamic hydrogels could also be applied for pH- and reactive oxygen species (ROS)-responsive release of loaded protein molecules without showing evident cytotoxicity and hemolysis in vitro. In addition, the dynamic hydrogels showed the anti-oxidative properties of high free radical and ROS scavenging capacity, which was verified by the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay and ROS fluorescence staining. Overall, this novel class of cytocompatible, self-healing, dual stimuli responsive, antibacterial, anti-oxidative, and injectable hydrogels could be promising as a wound dressing for chronic wound healing.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA
| | - Yajuan Su
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA
| | - Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingwei Xie
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA.,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
20
|
Wales DJ, Miralles-Comins S, Franco-Castillo I, Cameron JM, Cao Q, Karjalainen E, Alves Fernandes J, Newton GN, Mitchell SG, Sans V. Decoupling manufacturing from application in additive manufactured antimicrobial materials. Biomater Sci 2021; 9:5397-5406. [PMID: 33988192 DOI: 10.1039/d1bm00430a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
3D printable materials based on polymeric ionic liquids (PILs) capable of controlling the synthesis and stabilisation of silver nanoparticles (AgNPs) and their synergistic antimicrobial activity are reported. The interaction of the ionic liquid moieties with the silver precursor enabled the controlled in situ formation and stabilisation of AgNPs via extended UV photoreduction after the printing process, thus demonstrating an effective decoupling of the device manufacturing from the on-demand generation of nanomaterials, which avoids the potential aging of the nanomaterials through oxidation. The printed devices showed a multi-functional and tuneable microbicidal activity against Gram positive (B. subtilis) and Gram negative (E. coli) bacteria and against the mould Aspergillus niger. While the polymeric material alone was found to be bacteriostatic, the AgNPs conferred bactericidal properties to the material. Combining PIL-based materials with functionalities, such as in situ and photoactivated on-demand fabricated antimicrobial AgNPs, provides a synergistic functionality that could be harnessed for a variety of applications, especially when coupled to the freedom of design inherent to additive manufacturing techniques.
Collapse
Affiliation(s)
- Dominic J Wales
- Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sara Miralles-Comins
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain.
| | - Isabel Franco-Castillo
- Instituto de Nanociencia y Materiales de Aragón (INMA-CSIC), CSIC-Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Jamie M Cameron
- GSK Carbon Neutral Laboratory, University of Nottingham, Jubilee Campus, Nottingham, NG8 2GA, UK
| | - Qun Cao
- Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Erno Karjalainen
- Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jesum Alves Fernandes
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Graham N Newton
- GSK Carbon Neutral Laboratory, University of Nottingham, Jubilee Campus, Nottingham, NG8 2GA, UK
| | - Scott G Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA-CSIC), CSIC-Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Victor Sans
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain.
| |
Collapse
|
21
|
Velazco-Medel MA, Camacho-Cruz LA, Magaña H, Palomino K, Bucio E. Simultaneous Grafting Polymerization of Acrylic Acid and Silver Aggregates Formation by Direct Reduction Using γ Radiation onto Silicone Surface and Their Antimicrobial Activity and Biocompatibility. Molecules 2021; 26:2859. [PMID: 34065879 PMCID: PMC8151000 DOI: 10.3390/molecules26102859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/05/2023] Open
Abstract
The modification of medical devices is an area that has attracted a lot of attention in recent years; particularly, those developments which search to modify existing devices to render them antimicrobial. Most of these modifications involve at least two stages (modification of the base material with a polymer graft and immobilization of an antimicrobial agent) which are both time-consuming and complicate synthetic procedures; therefore, as an improvement, this project sought to produce antimicrobial silicone (PDMS) in a single step. Using gamma radiation as both an energy source for polymerization initiation and as a source of reducing agents in solution, PDMS was simultaneously grafted with acrylic acid and ethylene glycol dimethacrylate (AAc:EGDMA) while producing antimicrobial silver nanoparticles (AgNPs) onto the surface of the material. To obtain reproducible materials, experimental variables such as the effect of the dose, the intensity of radiation, and the concentration of the silver salt were evaluated, finding the optimal reaction conditions to obtain materials with valuable properties. The characterization of the material was performed using electronic microscopy and spectroscopic techniques such as 13C-CPMAS-SS-NMR and FTIR. Finally, these materials demonstrated good antimicrobial activity against S. aureus while retaining good cell viabilities (above 90%) for fibroblasts BALB/3T3.
Collapse
Affiliation(s)
- Marlene A. Velazco-Medel
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| | - Luis A. Camacho-Cruz
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| | - Héctor Magaña
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (H.M.); (K.P.)
| | - Kenia Palomino
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (H.M.); (K.P.)
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
22
|
Cheng Q, Ding S, Zheng Y, Wu M, Peng YY, Diaz-Dussan D, Shi Z, Liu Y, Zeng H, Cui Z, Narain R. Dual Cross-Linked Hydrogels with Injectable, Self-Healing, and Antibacterial Properties Based on the Chemical and Physical Cross-Linking. Biomacromolecules 2021; 22:1685-1694. [PMID: 33779160 DOI: 10.1021/acs.biomac.1c00111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injectable hydrogels have become a promising material for biomedical engineering applications, but microbial infection remains a common challenge in their application. In this study, we presented an injectable antibacterial hydrogel with self-healing property based on a dual cross-linking network structure of dynamic benzoxaborole-sugar and quadruple hydrogen bonds of the 2-ureido-4-pyrimidone (UPy) moieties at physiological pH. Dynamic rheological experiments demonstrated the gelatinous behavior of the double cross-linking network (storage modulus G' > loss modulus G″), and the modulus showed frequency-dependent behavior. The noncovalent interactions of UPy units in the polymer segment endowed the injectable hydrogels with good mechanical strength. By varying the solid contents, UPy units, as well as the pH, the mechanical properties of hydrogels could be controlled. Additionally, the hydrogels exhibited not only excellent self-healing and injectable properties but also pH and sugar dual-responsiveness. Moreover, the hydrogels could effectively inhibit the growth of both Escherichia coli and Staphylococcus aureus while exhibiting low toxicity. 3D cell encapsulation experiment results also demonstrated the potential use of these hydrogels as cell culture scaffolds. Taken together, the injectability, self-healing, and antimicrobial properties of the prepared hydrogels showed great promise for translational medicine, such as cell and tissue engineering applications.
Collapse
Affiliation(s)
- Qiuli Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shuxiang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yan Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Zuosen Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Zhanchen Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|
23
|
A S, Xu Q, Johnson M, Creagh-Flynn J, Venet M, Zhou D, Lara-Sáez I, Tai H, Wang W. An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive. APPLIED MATERIALS TODAY 2021; 22:100967. [DOI: 10.1016/j.apmt.2021.100967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
25
|
Poly(aspartic acid) based self-healing hydrogels with antibacterial and light-emitting properties for wound repair. Colloids Surf B Biointerfaces 2021; 200:111568. [PMID: 33460966 DOI: 10.1016/j.colsurfb.2021.111568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
We report here a self-healing hydrogel with antibacterial and light-emitting properties for wound repair. The hydrogel was prepared by reaction of poly(aspartic acid) (PASP) derivatives bearing groups of quaternary ammonium and boronic acid with poly(vinyl alcohol) (PVA). Due to the dynamic nature of boronic ester bonds, bacteria-killing activity of quaternary ammonium, and light-emitting activity of phenylboronic ester, the resultant hydrogels featured self-healing, antibacterial and light-emitting properties. The hydrogels show controlled release behavior of mouse epidermal growth factor (mEGF) and the in vivo studies show mEGF loaded hydrogel accelerate the wound repair of model mice and improve skin cell proliferation by prevention of bacterial infections. The PASP based hydrogels would show great promise in bio-applications, in particular for wound dressing and tissue repairing.
Collapse
|
26
|
Lee SC, Gillispie G, Prim P, Lee SJ. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chem Rev 2020; 120:10834-10886. [PMID: 32815369 PMCID: PMC7673205 DOI: 10.1021/acs.chemrev.0c00015] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioprinting researchers agree that "printability" is a key characteristic for bioink development, but neither the meaning of the term nor the best way to experimentally measure it has been established. Furthermore, little is known with respect to the underlying mechanisms which determine a bioink's printability. A thorough understanding of these mechanisms is key to the intentional design of new bioinks. For the purposes of this review, the domain of printability is defined as the bioink requirements which are unique to bioprinting and occur during the printing process. Within this domain, the different aspects of printability and the factors which influence them are reviewed. The extrudability, filament classification, shape fidelity, and printing accuracy of bioinks are examined in detail with respect to their rheological properties, chemical structure, and printing parameters. These relationships are discussed and areas where further research is needed, are identified. This review serves to aid the bioink development process, which will continue to play a major role in the successes and failures of bioprinting, tissue engineering, and regenerative medicine going forward.
Collapse
Affiliation(s)
- Sang Cheon Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
27
|
Bundjaja V, Santoso SP, Angkawijaya AE, Yuliana M, Soetaredjo FE, Ismadji S, Ayucitra A, Gunarto C, Ju YH, Ho MH. Fabrication of cellulose carbamate hydrogel-dressing with rarasaponin surfactant for enhancing adsorption of silver nanoparticles and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111542. [PMID: 33255094 DOI: 10.1016/j.msec.2020.111542] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/07/2020] [Accepted: 09/19/2020] [Indexed: 02/05/2023]
Abstract
Bacterial contamination on external wounds is known to be a factor that prevents wound healing and triggers tissue damage. Hydrogel-dressings with antibacterial activity is a useful medical device to avoid this contamination, wherein the antibacterial activity can be provided via incorporation of silver nanoparticles (AgNPs). Contrary to the conventional two-step preparation of an AgNPs-loaded hydrogel (AgNPs@hydrogel), this work aims to establish a new and facile synthesis method employing the adsorption principle. Once AgNO3 adsorbed into active sites of the hydrogels, in situ reductions using NaBH4 was employed to produce AgNPs@hydrogel. The effect of surfactant addition on the AgNO3 loading and the antibacterial activity of the resulting hydrogel dressing was investigated. The outcome of this work indicates that the addition of rarasaponin not only can increase the loading of AgNPs on cellulose carbamate hydrogel (CCH) but also significantly enhance the antibacterial activity of the resulted hydrogel-dressing. Superior to the other studied surfactant, the loading capacity (LC) of AgNPs is found to be 10.15, 9.94, and 7.53 mg/g for CCH modified with rarasaponin, CTAB, and Tween80, respectively. These findings conclude that the addition of surfactant, especially rarasaponin, can effectively improve the loading of AgNPs onto hydrogel-dressing via adsorption and promote the antibacterial activity. Furthermore, the cytotoxic test shows that the hydrogel-dressings have good biocompatibility toward skin fibroblast cells.
Collapse
Affiliation(s)
- Vania Bundjaja
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia.
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan.
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Aning Ayucitra
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Chintya Gunarto
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Yi-Hsu Ju
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Ming-Hua Ho
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| |
Collapse
|
28
|
Prusty K, Swain SK. Polypropylene oxide/polyethylene oxide‐cellulose hybrid nanocomposite hydrogels as drug delivery vehicle. J Appl Polym Sci 2020. [DOI: 10.1002/app.49921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kalyani Prusty
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur Odisha India
| | - Sarat K. Swain
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur Odisha India
| |
Collapse
|
29
|
Piras CC, Mahon CS, Smith DK. Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. Chemistry 2020; 26:8452-8457. [PMID: 32294272 PMCID: PMC7384024 DOI: 10.1002/chem.202001349] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Indexed: 12/28/2022]
Abstract
This Full Paper reports the formation of silver (Ag) NPs within spatially resolved two-component hydrogel beads, which combine a low-molecular-weight gelator (LMWG) DBS-CONHNH2 and a polymer gelator (PG) calcium alginate. The AgNPs are formed through in situ reduction of AgI , with the resulting nanoparticle-loaded gels being characterised in detail. The antibacterial activity of the nanocomposite gel beads was tested against two drug-resistant bacterial strains, often associated with hospital-acquired infections: vancomycin-resistant Enterococcus faecium (VRE) and Pseudomonas aeruginosa (PA14), and the AgNP-loaded gels showed good antimicrobial properties against both types of bacteria. It is suggested that the gel bead format of these AgNP-loaded hybrid hydrogels makes them promising versatile materials for potential applications in orthopaedics or wound healing.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Clare S. Mahon
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
30
|
An H, Yang Y, Bo Y, Ma X, Wang Y, Liu L, Wang H, He Y, Qin J. Fabrication of self-healing hydrogel from quaternized N-[3(dimethylamino)propyl]methacrylamide copolymer for antimicrobial and drug release applications. J Biomed Mater Res A 2020; 109:42-53. [PMID: 32418272 DOI: 10.1002/jbm.a.37005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022]
Abstract
Self-healing hydrogels have attracted great attention in recent years because of their wide application in bioscience and biotechnology. In this study, P(DMAPMA-stat-DAA) were synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization and quaternized to import antimicrobial properties. Then quaternized P(DMAPMA-stat-DAA) was used to prepare hydrogel containing acylhydrazone groups with Polyethylene oxide (PEO) diacylhydrazide as a cross-linking agent. The acylhydrazone groups imparted a variety of properties, including group responsiveness and self-healing properties to the hydrogel. At the same time, the quaternary ammonium endowed the hydrogel with the antimicrobial property. The mechanical property, self-healing properties, and antimicrobial property of hydrogels were investigated intensively. Results showed hydrogels formed in neutral conditions, and the luminescent property was introduced with PEO23 dinaphthhydrazide (DNH) cross-linking. The hydrogels showed a controlled pH-sensitive DOX·HC l and Ovalbumin (OVA) release profile. In addition, the hydrogel showed the antimicrobial property and may have important applications in the biomedical field in the near future.
Collapse
Affiliation(s)
- Heng An
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province, China
| | - Yan Yang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Yunyi Bo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province, China
| | - Longmei Liu
- Clinical Laboratory, Shanxi Cardiovascular Hospital, Taiyuan City, Shanxi Province, China
| | - Haijun Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province, China
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province, China
| |
Collapse
|
31
|
Liu Y, Zhou M, Liu Y, Han X, Zhang X, Liu S. Host–guest interaction-mediated fabrication of aggregation-induced emission supramolecular hydrogel for use as aqueous light-harvesting systems. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1779931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanxun Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Zhou
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Yang Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xie Han
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xiongzhi Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Zhang X, Liu Y, Wen J, Zhao Z, Chen H, Liu X, Liu S. Host-guest interaction-mediated fabrication of a hybrid microsphere-structured supramolecular hydrogel showing high mechanical strength. SOFT MATTER 2020; 16:3416-3424. [PMID: 32219229 DOI: 10.1039/d0sm00271b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The introduction of structured microsphere composites into hydrogels is found to improve their mechanical strength capability. Herein, chitosan microspheres were functionalized with poly(acrylamide-co-1-benzyl-3-vinylimidazolium bromide) (CS-P(AM-G)), which was synthesized through an in situ copolymerization of acrylamide and a guest functional monomer. Supramolecular hydrogels were fabricated by dynamic host-guest interactions between guest units and the host molecule cucurbit[8]uril (CB[8]). Investigations on the mechanical properties of the hydrogels show that the tensile stress and the compress stress of the hydrogels are five times higher than those of CB[8] hydrogels without CS, and the healing efficiency of the hydrogels at room temperature is 88% after 24 h. The results show that CS microspheres serve as both polyfunctional initiating and cross-linking centers, whereas the dynamic host-guest interactions endow the hydrogels with a higher self-healing property. The process provides a novel method for the production of tough and self-healing supramolecular hydrogels with various potential applications.
Collapse
Affiliation(s)
- Xiongzhi Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Yuanxun Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Junwei Wen
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Hongxiang Chen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
33
|
Alegre-Requena JV, Grijalvo S, Sampedro D, Mayr J, Saldías C, Marrero-Tellado JJ, Eritja R, Herrera RP, Díaz DD. Sulfonamide as amide isostere for fine-tuning the gelation properties of physical gels. RSC Adv 2020; 10:11481-11492. [PMID: 35495355 PMCID: PMC9050504 DOI: 10.1039/d0ra00943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
(S)-2-Stearamidopentanedioic acid (C18-Glu) is a known LMW gelator that forms supramolecular gels in a variety of solvents. In this work, we have carried out the isosteric substitution of the amide group by a sulfonamide moiety yielding the new isosteric gelator (S)-2-(octadecylsulfonamido)pentanedioic acid (Sulfo-Glu). The gelation ability and the key properties of the corresponding gels were compared in terms of gelation concentration, gel-to-sol transition temperature, mechanical properties, morphology, and gelation kinetics in several organic solvents and water. This comparison was also extended to (S)-2-(4-hexadecyl-1H-1,2,3-triazol-4-yl)pentanedioic acid (Click-Glu), which also constitutes an isostere of C18-Glu. The stabilizing interactions were explored through computational calculations. In general, Sulfo-Glu enabled the formation of non-toxic gels at lower concentrations, faster, and with higher thermal-mechanical stabilities than those obtained with the other isosteres in most solvents. Furthermore, the amide-sulfonamide isosteric substitution also influenced the morphology of the gel networks as well as the release rate of an embedded antibiotic (vancomycin) leading to antibacterial activity in vitro against Staphylococcus aureus.
Collapse
Affiliation(s)
- Juan V Alegre-Requena
- Institut für Organische Chemie, Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
- Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26 08034 Barcelona Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18-26 08034 Barcelona Spain
| | - Diego Sampedro
- Departamento de Química, Universidad de La Rioja Madre de Dios, 51 26006 Logroño Spain
| | - Judith Mayr
- Institut für Organische Chemie, Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Macul 7820436 Santiago Chile
| | - José Juan Marrero-Tellado
- Departamento de Química Orgánica, Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 2 38206 La Laguna Tenerife Spain
| | - Ramón Eritja
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26 08034 Barcelona Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18-26 08034 Barcelona Spain
| | - Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - David Díaz Díaz
- Institut für Organische Chemie, Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
- Departamento de Química Orgánica, Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 2 38206 La Laguna Tenerife Spain
| |
Collapse
|
34
|
Domiński A, Konieczny T, Kurcok P. α-Cyclodextrin-Based Polypseudorotaxane Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E133. [PMID: 31905603 PMCID: PMC6982288 DOI: 10.3390/ma13010133] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Supramolecular hydrogels that are based on inclusion complexes between α-cyclodextrin and (co)polymers have gained significant attention over the last decade. They are formed via dynamic noncovalent bonds, such as host-guest interactions and hydrogen bonds, between various building blocks. In contrast to typical chemical crosslinking (covalent linkages), supramolecular crosslinking is a type of physical interaction that is characterized by great flexibility and it can be used with ease to create a variety of "smart" hydrogels. Supramolecular hydrogels based on the self-assembly of polypseudorotaxanes formed by a polymer chain "guest" and α-cyclodextrin "host" are promising materials for a wide range of applications. α-cyclodextrin-based polypseudorotaxane hydrogels are an attractive platform for engineering novel functional materials due to their excellent biocompatibility, thixotropic nature, and reversible and stimuli-responsiveness properties. The aim of this review is to provide an overview of the current progress in the chemistry and methods of designing and creating α-cyclodextrin-based supramolecular polypseudorotaxane hydrogels. In the described systems, the guests are (co)polymer chains with various architectures or polymeric nanoparticles. The potential applications of such supramolecular hydrogels are also described.
Collapse
Affiliation(s)
| | | | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowskiej St., 41-819 Zabrze, Poland; (A.D.); (T.K.)
| |
Collapse
|
35
|
Self-healing and high reusability of Au nanoparticles catalyst based on supramolecular hydrogel. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zou W, Chen Y, Zhang X, Li J, Sun L, Gui Z, Du B, Chen S. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr Polym 2018; 202:246-257. [DOI: 10.1016/j.carbpol.2018.08.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023]
|
37
|
Serres-Gómez M, González-Gaitano G, Kaldybekov DB, Mansfield EDH, Khutoryanskiy VV, Isasi JR, Dreiss CA. Supramolecular Hybrid Structures and Gels from Host-Guest Interactions between α-Cyclodextrin and PEGylated Organosilica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10591-10602. [PMID: 30095271 DOI: 10.1021/acs.langmuir.8b01744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polypseudorotaxanes are polymer chains threaded by molecular rings that are free to unthread; these "pearl-necklace" can self-assemble further, leading to higher-order supramolecular structures with interesting functionalities. In this work, the complexation between α-cyclodextrin (α-CD), a cyclic oligosaccharide of glucopyranose units, and poly(ethylene glycol) (PEG) grafted to silica nanoparticles was studied. The threading of α-CD onto the polymeric chains leads to their aggregation into bundles, followed by either the precipitation of the inclusion complex or the formation of a gel phase, in which silica nanoparticles are incorporated. The kinetics of threading, followed by turbidimetry, revealed a dependence of the rate of complexation on the following parameters: the concentration of α-CD, temperature, PEG length (750, 4000, and 5000 g mol-1), whether the polymer is grafted or free in solution, and the density of grafting. Complexation is slower, and temperature has a higher impact on PEG grafted on silica nanoparticles compared to PEG free in solution. Thermodynamic parameters extracted from the transition-state theory showed that inclusion complex formation is favored with grafted PEG compared to free PEG and establishes a ratio of complexation of five to six ethylene oxide units per cyclodextrin. The complexation yields, determined by gravimetry, revealed that much higher yields are obtained with longer chains and higher grafting density. Thermogravimetric analysis and Fourier transform infrared spectroscopy on the inclusion complex corroborate the number of macrocycles threaded on the chains. A sol-gel transition was observed with the longer PEG chain (5k) at specific mixing ratios; oscillatory shear rheology measurements confirmed a highly solid-like behavior, with an elastic modulus G' of up to 25 kPa, higher than that in the absence of silica. These results thus provide the key parameters dictating inclusion complex formation between cyclodextrin and PEG covalently attached to colloidal silica and demonstrate a facile route toward soft nanoparticle gels based on host-guest interactions.
Collapse
Affiliation(s)
- Mariana Serres-Gómez
- Department of Chemistry , University of Navarra , 31080 Pamplona , Spain
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences , King's College London , Franklin-Wilkins Building, 150 Stamford Street , SE1 9NH London , U.K
| | | | - Daulet B Kaldybekov
- Reading School of Pharmacy , University of Reading , Whiteknights, P.O. Box 224, RG6 6AD Reading , U.K
- Faculty of Chemistry and Chemical Technology , Al-Farabi Kazakh National University , Almaty 050040 , Kazakhstan
| | - Edward D H Mansfield
- Reading School of Pharmacy , University of Reading , Whiteknights, P.O. Box 224, RG6 6AD Reading , U.K
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy , University of Reading , Whiteknights, P.O. Box 224, RG6 6AD Reading , U.K
| | - José Ramón Isasi
- Department of Chemistry , University of Navarra , 31080 Pamplona , Spain
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences , King's College London , Franklin-Wilkins Building, 150 Stamford Street , SE1 9NH London , U.K
| |
Collapse
|