1
|
Ren Y, Yang H, Xu D, Zhang Z, Gao S, Yu R. Application of Multifunctional Metal Nanoparticles in the Treatment of Glioma. Int J Nanomedicine 2025; 20:625-638. [PMID: 39839457 PMCID: PMC11748046 DOI: 10.2147/ijn.s493565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Glioma is the most common primary malignant brain tumor with a poor survival rate. It is characterized by diffuse and invasive growth and heterogeneity, which limits tumor identification and complete resection. Therefore, the precise detection and postoperative adjuvant therapy of gliomas have become increasingly important and urgent. Nanotechnology, with its excellent biocompatibility and controllable chemical properties, has attracted much attention in recent decades. Metal nanoparticles are widely used in the field of biomedical imaging and detection, and have shown promising applications in targeted drug delivery and therapy. The current review aims to systematically summarize the application of different types of metal nanoparticles in the treatment and detection of glioma. We also discussed the advantages and mechanisms of metal nanoparticles when used for glioma therapy, including chemotherapy, radiotherapy and photothermal therapy. We hope to promote the application of metallic nanoparticles in glioma diagnosis and treatment, moving towards clinical translation to benefit patients.
Collapse
Affiliation(s)
- Yanhong Ren
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Han Yang
- Department of Neurology, The First Hospital of Changsha, Changsha, 410008, People’s Republic of China
| | - Duo Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| | - Shangfeng Gao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| | - Rutong Yu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| |
Collapse
|
2
|
Shen Y, Sun Y, Liang Y, Xu X, Su R, Wang Y, Qi W. Full-color peptide-based fluorescent nanomaterials assembled under the control of amino acid doping. NANOSCALE HORIZONS 2024; 10:158-164. [PMID: 39498619 DOI: 10.1039/d4nh00400k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Peptide-based biofluorescents are of great interest due to their controllability and biocompatibility, as well as their potential applications in biomedical imaging and biosensing. Here, we present a simple approach to synthesizing full-color fluorescent nanomaterials with broad-spectrum fluorescence emissions, high optical stability, and long fluorescence lifetimes. By doping amino acids during the enzyme-catalyzed oxidative self-assembly of tyrosine-based peptides, we can precisely control the intermolecular interactions to obtain nanoparticles with fluorescence emission at different wavelengths. The synthesized peptide-based fluorescent nanomaterials with excellent biocompatibility and stable near-infrared fluorescence emission were shown to have potential for bioimaging applications. This research provides new ideas for the development of new bioluminescent materials that are cost-effective, environmentally friendly, and safe for biomedical use.
Collapse
Affiliation(s)
- Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yulin Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Xiaojian Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Xu H, Zhao L, Wan Z, Liu Y, Wei M. Bidirectional hybridized hairpin DNA fluorescent aptasensor based on Au-Pd NPs and CDs for ratiometric detection of AFB1. Mikrochim Acta 2024; 191:489. [PMID: 39066938 DOI: 10.1007/s00604-024-06560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
A novel and simple ratiometric fluorescent aptasensor was developed for the sensitive detection of aflatoxin B1 (AFB1). A hairpin DNA (h-DNA) was independently synthesized as the basic skeleton, and the bidirectional hybridization of h-DNA can increase the load of aptamer and signal probes, thereby realizing signal amplification. The high-efficiency fluorescence resonance energy transfer interaction between gold-palladium nanoparticles (Au-Pd NPs) and the self-synthesized fluorescent probe carbon dots (CDs) was utilized. Moreover, the label-free probe SYBR Green I (SG I) dye was introduced to form a double-signal probe with CDs, and a ratiometric sensor with FCDs/FSG I as a response signal was constructed. The ratio strategy can eliminate the fluctuation of external factors, thus improving the accuracy and reliability of the sensor. The quenching effect of Au-Pd NPs on CDs was 1.4 times that of AuNPs and 3.4 times that of Pd NPs, respectively. In the range 1-100 ng/mL, FCDs/FSG I showed a good linear relationship with the logarithm of the concentration of AFB1, and the limit of detection was as low as 0.07 ng/mL. The sensor was used to detect AFB1 in spiked peanuts and wine samples, and the recovery was between 91 and 115%, indicating that the sensor has high application potential in real sample analysis.
Collapse
Affiliation(s)
- Hongyan Xu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Luyang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Zhigang Wan
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen, 518045, PR China
| | - Yong Liu
- School of Energy Science and Technology, Henan University, Kaifeng, 475004, PR China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China.
| |
Collapse
|
4
|
Kaveh Zenjanab M, Abdolahinia ED, Alizadeh E, Hamishehkar H, Shahbazi R, Ranjbar-Navazi Z, Jahanban-Esfahlan R, Fathi M, Mohammadi SA. Hyaluronic Acid-Targeted Niosomes for Effective Breast Cancer Chemostarvation Therapy. ACS OMEGA 2024; 9:10875-10885. [PMID: 38463340 PMCID: PMC10918778 DOI: 10.1021/acsomega.3c09782] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Chemotherapy is widely used for cancer therapy; however, its efficacy is limited due to poor targeting specificity and severe side effects. Currently, the next generations of delivery systems with multitasking potential have attracted significant attention for cancer therapy. This study reports on the design and synthesis of a multifunctional nanoplatform based on niosomes (NIO) coloaded with paclitaxel (PTX), a chemotherapeutic drug commonly used to treat breast cancer, and sodium oxamate (SO), a glycolytic inhibitor to enhance the cytotoxicity of anticancer drug, along with quantum dots (QD) as bioimaging agents, and hyaluronic acid (HA) coating for active targeting. HN@QPS nanoparticles with a size of ∼150 nm and a surface charge of -39.9 mV with more than 90% EE for PTX were synthesized. Codelivery of SO with PTX remarkably boosted the anticancer effects of PTX, achieving IC50 values of 1-5 and >0.5 ppm for HN@QP and HN@QPS, respectively. Further, HN@QPS treatment enhanced the apoptosis rate by more than 70% in MCF-7 breast cancer cells without significant cytotoxicity on HHF-2 normal cells. Also, quantification of mitochondrial fluorescence showed efficient toxicity against MCF-7 cells. Moreover, the cellular uptake evaluation demonstrated an improved uptake of HN@Q in MCF-7 cells. Taken together, this preliminary research indicated the potential of HN@QPS as an efficient targeted-dual drug delivery nanotheranostic against breast cancer cells.
Collapse
Affiliation(s)
- Masoumeh Kaveh Zenjanab
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
| | - Elaheh Dalir Abdolahinia
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
- Department
of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Effat Alizadeh
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
| | - Hamed Hamishehkar
- Drug
Applied Research Center, Tabriz University
of Medical Sciences, Tabriz 51656-65931, Iran
| | - Rasoul Shahbazi
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
| | - Zahra Ranjbar-Navazi
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
| | - Rana Jahanban-Esfahlan
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
| | - Marziyeh Fathi
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
| | - Seyed Abolghasem Mohammadi
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran
- Department
of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
5
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
6
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
7
|
Hildebrandt N, Lim M, Kim N, Choi DY, Nam JM. Plasmonic quenching and enhancement: metal-quantum dot nanohybrids for fluorescence biosensing. Chem Commun (Camb) 2023; 59:2352-2380. [PMID: 36727288 DOI: 10.1039/d2cc06178c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Plasmonic metal nanoparticles and semiconductor quantum dots (QDs) are two of the most widely applied nanomaterials for optical biosensing and bioimaging. While their combination for fluorescence quenching via nanosurface energy transfer (NSET) or Förster resonance energy transfer (FRET) offers powerful ways of tuning and amplifying optical signals and is relatively common, metal-QD nanohybrids for plasmon-enhanced fluorescence (PEF) have been much less prevalent. A major reason is the competition between fluorescence quenching and enhancement, which poses important challenges for optimizing distances, orientations, and spectral overlap toward maximum PEF. In this feature article, we discuss the interplay of the different quenching and enhancement mechanisms (a mixed distance dependence of quenching and enhancement - "quenchancement") to better understand the obstacles that must be overcome for the development of metal-QD nanohybrid-based PEF biosensors. The different nanomaterials, their combination within various surface and solution based design concepts, and their structural and photophysical characterization are reviewed and applications toward advanced optical biosensing and bioimaging are presented along with guidelines and future perspectives for sensitive, selective, and versatile bioanalytical research and biomolecular diagnostics with metal-QD nanohybrids.
Collapse
Affiliation(s)
- Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Mihye Lim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Namjun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Da Yeon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Padmakumari Kurup C, Abdullah Lim S, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry 2022; 147:108170. [DOI: 10.1016/j.bioelechem.2022.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
|
9
|
A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown the development of electrochemical biosensors based on enzymes immobilized in metal–organic frameworks (MOFs). Although enzymes have unique properties, such as efficiency, selectivity, and environmental sustainability, when immobilized, these properties are improved, presenting significant potential for several biotechnological applications. Using MOFs as matrices for enzyme immobilization has been considered a promising strategy due to their many advantages compared to other supporting materials, such as larger surface areas, higher porosity rates, and better stability. Biosensors are analytical tools that use a bioactive element and a transducer for the detection/quantification of biochemical substances in the most varied applications and areas, in particular, food, agriculture, pharmaceutical, and medical. This review will present novel insights on the construction of biosensors with materials based on MOFs. Herein, we have been highlighted the use of MOF for biosensing for biomedical, food safety, and environmental monitoring areas. Additionally, different methods by which immobilizations are performed in MOFs and their main advantages and disadvantages are presented.
Collapse
|
10
|
Podh NK, Paliwal S, Dey P, Das A, Morjaria S, Mehta G. In-vivo Single-Molecule Imaging in Yeast: Applications and Challenges. J Mol Biol 2021; 433:167250. [PMID: 34537238 DOI: 10.1016/j.jmb.2021.167250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Single-molecule imaging has gained momentum to quantify the dynamics of biomolecules in live cells, as it provides direct real-time measurements of various cellular activities under their physiological environment. Yeast, a simple and widely used eukaryote, serves as a good model system to quantify single-molecule dynamics of various cellular processes because of its low genomic and cellular complexities, as well as its facile ability to be genetically manipulated. In the past decade, significant developments have been made regarding the intracellular labeling of biomolecules (proteins, mRNA, fatty acids), the microscopy setups to visualize single-molecules and capture their fast dynamics, and the data analysis pipelines to interpret such dynamics. In this review, we summarize the current state of knowledge for the single-molecule imaging in live yeast cells to provide a ready reference for beginners. We provide a comprehensive table to demonstrate how various labs tailored the imaging regimes and data analysis pipelines to estimate various biophysical parameters for a variety of biological processes. Lastly, we present current challenges and future directions for developing better tools and resources for single-molecule imaging in live yeast cells.
Collapse
Affiliation(s)
- Nitesh Kumar Podh
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@PodhNitesh
| | - Sheetal Paliwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@Sheetal62666036
| | - Partha Dey
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@ParthaD63416958
| | - Ayan Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@AyanDas76471821
| | - Shruti Morjaria
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India. https://twitter.com/@shruti_morjaria
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Issa A, Izquierdo I, Merheb M, Ge D, Broussier A, Ghabri N, Marguet S, Couteau C, Bachelot R, Jradi S. One Strategy for Nanoparticle Assembly onto 1D, 2D, and 3D Polymer Micro and Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41846-41856. [PMID: 34459202 DOI: 10.1021/acsami.1c03905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The integration of nanoparticles (NPs) into photonic devices and plasmonic sensors requires selective patterning of these NPs with fine control of their size, shape, and spatial positioning. In this article, we report on a general strategy to pattern different types of NPs. This strategy involves the functionalization of photopolymers before their patterning by two-photon laser writing to fabricate micro- and nanostructures that selectively attract colloidal NPs with suitable ligands, allowing their precise immobilization and organization even within complex 3D structures. Monolayers of NPs without aggregations are obtained and the surface density of NPs on the polymer surface can be controlled by changing either the time of immersion in the colloidal solution or the type of amine molecule chemically grafted on the polymer surface. Different types of NPs (gold, silver, polystyrene, iron oxide, colloidal quantum dots, and nanodiamonds) of different sizes are introduced showing a potential toward nanophotonic applications. To validate the great potential of our method, we successfully demonstrate the integration of quantum dots within a gold nanocube with high spatial resolution and nanometer precision. The promise of this hybrid nanosource of light (plasmonic/polymer/QDs) as optical nanoswitch is illustrated through photoluminescence measurements under polarized exciting light.
Collapse
Affiliation(s)
- Ali Issa
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
- Doctoral School of Sciences and Technology, Rafic Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Irene Izquierdo
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Melissa Merheb
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
- Doctoral School of Sciences and Technology, Rafic Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Dandan Ge
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Aurélie Broussier
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Nawres Ghabri
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Sylvie Marguet
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Christophe Couteau
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Renaud Bachelot
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
- Key Lab of Advanced Display and System Application, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China
| | - Safi Jradi
- Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| |
Collapse
|
12
|
Ag Seleci D, Maurer V, Barlas FB, Porsiel JC, Temel B, Ceylan E, Timur S, Stahl F, Scheper T, Garnweitner G. Transferrin-Decorated Niosomes with Integrated InP/ZnS Quantum Dots and Magnetic Iron Oxide Nanoparticles: Dual Targeting and Imaging of Glioma. Int J Mol Sci 2021; 22:ijms22094556. [PMID: 33925347 PMCID: PMC8123697 DOI: 10.3390/ijms22094556] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The development of multifunctional nanoscale systems that can mediate efficient tumor targeting, together with high cellular internalization, is crucial for the diagnosis of glioma. The combination of imaging agents into one platform provides dual imaging and allows further surface modification with targeting ligands for specific glioma detection. Herein, transferrin (Tf)-decorated niosomes with integrated magnetic iron oxide nanoparticles (MIONs) and quantum dots (QDs) were formulated (PEGNIO/QDs/MIONs/Tf) for efficient imaging of glioma, supported by magnetic and active targeting. Transmission electron microscopy confirmed the complete co-encapsulation of MIONs and QDs in the niosomes. Flow cytometry analysis demonstrated enhanced cellular uptake of the niosomal formulation by glioma cells. In vitro imaging studies showed that PEGNIO/QDs/MIONs/Tf produces an obvious negative-contrast enhancement effect on glioma cells by magnetic resonance imaging (MRI) and also improved fluorescence intensity under fluorescence microscopy. This novel platform represents the first niosome-based system which combines magnetic nanoparticles and QDs, and has application potential in dual-targeted imaging of glioma.
Collapse
Affiliation(s)
- Didem Ag Seleci
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany; (D.A.S.); (V.M.); (J.C.P.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany; (D.A.S.); (V.M.); (J.C.P.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Firat Baris Barlas
- Faculty of Science Biochemistry Department, Ege University, 35100 Izmir, Turkey; (F.B.B.); (E.C.); (S.T.)
| | - Julian Cedric Porsiel
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany; (D.A.S.); (V.M.); (J.C.P.); (B.T.)
| | - Bilal Temel
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany; (D.A.S.); (V.M.); (J.C.P.); (B.T.)
| | - Elcin Ceylan
- Faculty of Science Biochemistry Department, Ege University, 35100 Izmir, Turkey; (F.B.B.); (E.C.); (S.T.)
| | - Suna Timur
- Faculty of Science Biochemistry Department, Ege University, 35100 Izmir, Turkey; (F.B.B.); (E.C.); (S.T.)
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Thomas Scheper
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany; (D.A.S.); (V.M.); (J.C.P.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
13
|
He JH, Cheng YY, Zhang QQ, Liu H, Huang CZ. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity. Talanta 2020; 219:121276. [DOI: 10.1016/j.talanta.2020.121276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023]
|
14
|
Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Coumarin-Modified CQDs for Biomedical Applications-Two-Step Synthesis and Characterization. Int J Mol Sci 2020; 21:E8073. [PMID: 33137996 PMCID: PMC7663340 DOI: 10.3390/ijms21218073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Waste biomass such as lignin constitutes a great raw material for eco-friendly carbon quantum dots (CQDs) synthesis, which find numerous applications in various fields of industry and medicine. Carbon nanodots, due to their unique luminescent properties as well as water-solubility and biocompatibility, are superior to traditional organic dyes. Thus, obtainment of CQDs with advanced properties can contribute to modern diagnosis and cell visualization method development. In this article, a new type of coumarin-modified CQD was obtained via a hybrid, two-step pathway consisting of hydrothermal carbonization and microwave-assisted surface modification with coumarin-3-carboxylic acid and 7-(Diethylamino) coumarin-3-carboxylate. The ready products were characterized over their chemical structure and morphology. The nanomaterials were confirmed to have superior fluorescence characteristics and quantum yield up to 18.40%. They also possessed the ability of biomolecules and ion detection due to the fluorescence quenching phenomena. Their lack of cytotoxicity to L929 mouse fibroblasts was confirmed by XTT assay. Moreover, the CQDs were proven over their applicability in real-time bioimaging. Obtained results clearly demonstrated that proposed surface-modified carbon quantum dots may become a powerful tool applicable in nanomedicine and pharmacy.
Collapse
Affiliation(s)
- Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland; (J.R.-P.); (M.P.); (D.B.)
| | | | | | | |
Collapse
|
15
|
Tito GS, Abolanle AS, Kuvarega AT, Idris AO, Mamba BB, Feleni U. Nickel Selenide Quantum Dot Applications in Electrocatalysis and Sensors. ELECTROANAL 2020. [DOI: 10.1002/elan.202060341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ginny S. Tito
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1709 Johannesburg South Africa
| | - Adekunle S. Abolanle
- Obafemi Awolowo University Department of Chemistry Ibadan Road 220005 lle-lfe, Osun Nigeria
| | - Alex T. Kuvarega
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1709 Johannesburg South Africa
| | - Azeez O. Idris
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1709 Johannesburg South Africa
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1709 Johannesburg South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Florida Campus 1709 Johannesburg South Africa
| |
Collapse
|
16
|
Luo F, Qin G, Xia T, Fang X. Single-Molecule Imaging of Protein Interactions and Dynamics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:337-361. [PMID: 32228033 DOI: 10.1146/annurev-anchem-091619-094308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Live-cell single-molecule fluorescence imaging has become a powerful analytical tool to investigate cellular processes that are not accessible to conventional biochemical approaches. This has greatly enriched our understanding of the behaviors of single biomolecules in their native environments and their roles in cellular events. Here, we review recent advances in fluorescence-based single-molecule bioimaging of proteins in living cells. We begin with practical considerations of the design of single-molecule fluorescence imaging experiments such as the choice of imaging modalities, fluorescent probes, and labeling methods. We then describe analytical observables from single-molecule data and the associated molecular parameters along with examples of live-cell single-molecule studies. Lastly, we discuss computational algorithms developed for single-molecule data analysis.
Collapse
Affiliation(s)
- Fang Luo
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tie Xia
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Hong ZY, Liu SL, Pang DW. A method for the statistical evaluation of the fluorescence intensity of single blinking quantum dots using a confocal fluorescence microscope. Analyst 2020; 145:3131-3135. [PMID: 32186553 DOI: 10.1039/d0an00010h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The evaluation of the fluorescence intensity of single quantum dots (QDs) using a confocal fluorescence microscope can provide an alternative approach for estimating the effects of environmental changes or surface modifications on the fluorescence intensity of single QDs. In the case of blinking QDs, irregular blinking would significantly influence the intensity evaluation results that are based on the analysis of one or a few single QDs. In this regard, statistical intensity evaluations based on a large number of single QDs would be helpful to estimate an approximate intensity value of single QDs with reduced effects of blinking on the evaluation results. Herein, we developed a convenient method to statistically evaluate the fluorescence intensity of a large number of single blinking QDs using Gaussian distribution. Based on the intensity analysis of thousands of single QDs, the fluorescence intensity of the single QDs evaluated using a confocal fluorescence microscope was approximately 4090 with little data fluctuation induced by blinking.
Collapse
Affiliation(s)
- Zheng-Yuan Hong
- PET-CT/MRI Center, Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
|
19
|
Ray A, Bhattacharya S. Study of alloyed quantum dots-porphyrazine interaction in solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Wu T, Liu X, Liu Y, Cheng M, Liu Z, Zeng G, Shao B, Liang Q, Zhang W, He Q, Zhang W. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213097] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Kucherenko IS, Soldatkin OO, Kucherenko DY, Soldatkina OV, Dzyadevych SV. Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. NANOSCALE ADVANCES 2019; 1:4560-4577. [PMID: 36133111 PMCID: PMC9417062 DOI: 10.1039/c9na00491b] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Electrochemical enzyme-based biosensors are one of the largest and commercially successful groups of biosensors. Integration of nanomaterials in the biosensors results in significant improvement of biosensor sensitivity, limit of detection, stability, response rate and other analytical characteristics. Thus, new functional nanomaterials are key components of numerous biosensors. However, due to the great variety of available nanomaterials, they should be carefully selected according to the desired effects. The present review covers the recent applications of various types of nanomaterials in electrochemical enzyme-based biosensors for the detection of small biomolecules, environmental pollutants, food contaminants, and clinical biomarkers. Benefits and limitations of using nanomaterials for analytical purposes are discussed. Furthermore, we highlight specific properties of different nanomaterials, which are relevant to electrochemical biosensors. The review is structured according to the types of nanomaterials. We describe the application of inorganic nanomaterials, such as gold nanoparticles (AuNPs), platinum nanoparticles (PtNPs), silver nanoparticles (AgNPs), and palladium nanoparticles (PdNPs), zeolites, inorganic quantum dots, and organic nanomaterials, such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), carbon and graphene quantum dots, graphene, fullerenes, and calixarenes. Usage of composite nanomaterials is also presented.
Collapse
Affiliation(s)
- I S Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Department of Mechanical Engineering, Iowa State University Ames Iowa 50011 USA
| | - O O Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| | - D Yu Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
| | - O V Soldatkina
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
- F. D. Ovcharenko Institute of Biocolloidal Chemistry Acad. Vernadskoho Blvd. 42 Kyiv 03142 Ukraine
| | - S V Dzyadevych
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| |
Collapse
|
22
|
Biosensors for Epilepsy Management: State-of-Art and Future Aspects. SENSORS 2019; 19:s19071525. [PMID: 30925837 PMCID: PMC6480455 DOI: 10.3390/s19071525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Epilepsy is a serious neurological disorder which affects every aspect of patients’ life, including added socio-economic burden. Unfortunately, only a few suppressive medicines are available, and a complete cure for the disease has not been found yet. Excluding the effectiveness of available therapies, the timely detection and monitoring of epilepsy are of utmost priority for early remediation and prevention. Inability to detect underlying epileptic signatures at early stage causes serious damage to the central nervous system (CNS) and irreversible detrimental variations in the organ system. Therefore, development of a multi-task solving novel smart biosensing systems is urgently required. The present review highlights advancements in state-of-art biosensing technology investigated for epilepsy diseases diagnostics and progression monitoring or both together. State of art epilepsy biosensors are composed of nano-enabled smart sensing platform integrated with micro/electronics and display. These diagnostics systems provide bio-information needed to understand disease progression and therapy optimization timely. The associated challenges related to the development of an efficient epilepsy biosensor and vision considering future prospects are also discussed in this report. This review will serve as a guide platform to scholars for understanding and planning of future research aiming to develop a smart bio-sensing system to detect and monitor epilepsy for point-of-care (PoC) applications.
Collapse
|
23
|
Li J, Fu J, Yang Q, Wang L, Wang X, Chen L. Thermosensitive molecularly imprinted core–shell CdTe quantum dots as a ratiometric fluorescence nanosensor for phycocyanin recognition and detection in seawater. Analyst 2018; 143:3570-3578. [DOI: 10.1039/c8an00811f] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining molecular imprinting, ratiometric fluorescence and a stimulus response enables the temperature-regulated sensitive detection of phycocyanin.
Collapse
Affiliation(s)
- Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Junqing Fu
- The Provincial Food and Drug Inspection Institute of Shandong
- Jinan 250101
- China
| | - Qian Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Liyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|