1
|
Zhang C, Kouznetsova TB, Zhu B, Sweeney L, Lancer M, Gitsov I, Craig SL, Hu X. Advancing the Mechanosensitivity of Atropisomeric Diarylethene Mechanophores through a Lever-Arm Effect. J Am Chem Soc 2025; 147:2502-2509. [PMID: 39793028 PMCID: PMC11760174 DOI: 10.1021/jacs.4c13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers. Notably, the transition force for the diarylethene M3 featuring extended 5-phenylbenzo[b]thiophene aryl groups is determined to be 131 pN ± 4 pN by SMFS. This value is lower than those typically recorded for other mechanically induced chemical processes, highlighting its exceptional sensitivity to low-magnitude forces. This work contributes a fundamental understanding of chemo-mechanical coupling in atropisomeric configurational mechanophores and paves the way for designing highly sensitive mechanochemical processes that could facilitate the study of nanoscale mechanical behaviors across scientific disciplines.
Collapse
Affiliation(s)
- Cijun Zhang
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | | | - Boyu Zhu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Liam Sweeney
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Max Lancer
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Ivan Gitsov
- Department
of Chemistry, The Michael M. Szwarc Polymer Research Institute, State University of New York - ESF, Syracuse, New York 13210, United States
- Department
of Biomedical and Chemical Engineering, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Stephen L. Craig
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
3
|
Sahu S, Roy R, Anand R. Harnessing the Potential of Biological Recognition Elements for Water Pollution Monitoring. ACS Sens 2022; 7:704-715. [PMID: 35275620 DOI: 10.1021/acssensors.1c02579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Environmental monitoring of pollutants is an imperative first step to remove the genotoxic, embryotoxic, and carcinogenic toxins. Various biological sensing elements such as proteins, aptamers, whole cells, etc., have been used to track down major pollutants, including heavy metals, aromatic pollutants, pathogenic microorganisms, and pesticides in both environmental samples and drinking water, demonstrating their potential in a true sense. The intermixed use of nanomaterials, electronics, and microfluidic systems has further improved the design and enabled robust on-site detection with enhanced sensitivity. Through this perspective, we shed light on the advances in the field and entail recent efforts to optimize these systems for real-time, online sensing and on-site field monitoring.
Collapse
Affiliation(s)
- Subhankar Sahu
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohita Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Li S, Zheng Y, Zou Q, Liao G, Liu X, Zou L, Yang X, Wang Q, Wang K. Engineering and Application of a Myoglobin Binding Split Aptamer. Anal Chem 2020; 92:14576-14581. [PMID: 33052657 DOI: 10.1021/acs.analchem.0c02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Given that a split aptamer provides a chance for the development of a sandwich assay for targets with only one aptamer, it has received extensive attention in biosensing. However, due to the lack of binding mechanisms and reliable methods, there were still a few split aptamers that bind to proteins. In this work, cardiac biomarker myoglobin (Myo) was selected as a model, a new strategy of engineering split aptamers was explored with atomic force spectroscopy (AFM), and split aptamers against target protein could be achieved by choosing the optimal binding probability between split aptamers and target. Then, the obtained split aptamers were designed for Myo detection based on dynamic light scattering (DLS). The results demonstrated that the obtained split aptamers could be used to detect targets in human serum. The strategy of engineering split aptamers has the advantages of being intuitive and reliable and could be a general strategy for obtaining split aptamers.
Collapse
Affiliation(s)
- Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Lei Y, Zhang F, Guan P, Guo P, Wang G. Rapid and selective detection of Hg(ii) in water using AuNP in situ-modified filter paper by a head-space solid phase extraction Zeeman atomic absorption spectroscopy method. NEW J CHEM 2020. [DOI: 10.1039/d0nj02294b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuNPs modified filter paper as sensitive mercury sensor was applied in the head-space solid phase extraction (HS-SPE) of Hg(ii). With negative pressure sampling, it can achieve in situ sampling and detection rapidly in a complex environment.
Collapse
Affiliation(s)
- Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Fang Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Peng Guan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Guanhua Wang
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
6
|
Li S, Zheng Y, Liu Y, Geng X, Liu X, Zou L, Wang Q, Yang X, Wang K. Investigation of the interaction between split aptamer and vascular endothelial growth factor 165 using single molecule force spectroscopy. J Mol Recognit 2019; 33:e2829. [PMID: 31816660 DOI: 10.1002/jmr.2829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 01/06/2023]
Abstract
Understanding the binding of split aptamer/its target could become a breakthrough in the application of split aptamer. Herein, vascular endothelial growth factor (VEGF), a major biomarker of human diseases, was used as a model, and its interaction with split aptamer was explored with single molecule force spectroscopy (SMFS). SMFS demonstrated that the interaction force of split aptamer/VEGF165 was 169.44 ± 6.59 pN at the loading rate of 35.2 nN/s, and the binding probability of split aptamer/VEGF165 was dependent on the concentration of VEGF165 . On the basis of dynamic force spectroscopy results, one activation barrier in the dissociation process of split aptamer/VEGF165 complexes was revealed, which was similar to that of the intact aptamer/VEGF165 . Besides, the dissociation rate constant (koff ) of split aptamer/VEGF165 was close to that of intact aptamer/VEGF165 , and the interaction force of split aptamer/VEGF165 was higher than the force of intact aptamer/VEGF165 . It indicated that split aptamer also possessed high affinity with VEGF165 . The work can provide a new method for exploring the interaction of split aptamer/its targets at single-molecule level.
Collapse
Affiliation(s)
- Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Yaqin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| |
Collapse
|