1
|
Castro-Hinojosa C, Del Sol-Fernández S, Moreno-Antolín E, Martín-Gracia B, Ovejero JG, de la Fuente JM, Grazú V, Fratila RM, Moros M. A Simple and Versatile Strategy for Oriented Immobilization of His-Tagged Proteins on Magnetic Nanoparticles. Bioconjug Chem 2023; 34:2275-2292. [PMID: 37882455 PMCID: PMC10739578 DOI: 10.1021/acs.bioconjchem.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M2+) complex and polyethylene glycol (PEG) molecules. As a proof-of-concept, we demonstrate the oriented immobilization of a recombinant cadherin fragment engineered with a hexahistidine tag (6His-tag) onto the MNPs. Our developed methodology is simple and direct, enabling the oriented bioconjugation of His-tagged cadherins to MNPs while preserving protein functionality and the colloidal stability of the MNPs, and could be extended to other proteins expressing a polyhistidine tag. When compared to the traditional method where NTA is first conjugated to the MNPs and afterward free metal ions are added to form the complex, this novel strategy results in a higher functionalization efficiency while avoiding MNP aggregation. Additionally, our method allows for covalent bonding of the cadherin fragments to the MNP surface while preserving functionality, making it highly versatile. Finally, our strategy not only ensures the correct orientation of the protein fragments on the MNPs but also allows for the precise control of their density. This feature enables the selective targeting of E-cadherin-expressing cells only when MNPs are decorated with a high density of cadherin fragments.
Collapse
Affiliation(s)
- Christian Castro-Hinojosa
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Susel Del Sol-Fernández
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Eduardo Moreno-Antolín
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Beatriz Martín-Gracia
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Jesús G. Ovejero
- Instituto
de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
- Department
of Dosimetry and Radioprotection, General
University Hospital Gregorio Marañón, Dr Esquerdo 46, Madrid 28007, Spain
| | - Jesús Martínez de la Fuente
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Valeria Grazú
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Raluca M. Fratila
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
2
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
3
|
Cai H, Wang M, Liu J, Wang X. Theoretical and experimental study of a highly sensitive SPR biosensor based on Au grating and Au film coupling structure. OPTICS EXPRESS 2022; 30:26136-26148. [PMID: 36236810 DOI: 10.1364/oe.461768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 06/16/2023]
Abstract
A high-sensitivity surface plasmon resonance (SPR) sensor based on the coupling of Au grating and Au film is investigated through simulations and experiments. The SPR sensor is designed by using a hybrid method composed of genetic algorithm (GA) and rigorous coupled wave analysis (RCWA). The numerical results indicate the sensor has an angular sensitivity of 397.3°/RIU (refractive index unit), which is approximately 2.81 times higher than the conventional Au-based sensor and it is verified by experiments. Theoretical analysis, by finite-difference time-domain (FDTD) method, demonstrates the co-coupling between surface plasmon polaritons (SPPs) propagating on the surface of Au film and localized surface plasmons (LSPs) in the Au grating nanostructure, improving the sensitivity of the SPR sensor. According to the optimized structural parameters, the proposed sensor is fabricated using e-beam lithography and magnetron sputtering. In addition, the proposed sensor is very sensitive to the detection of small molecules. The limit of detection (LOD) for okadaic acid (OA) is 0.72 ng/mL based on an indirect competitive inhibition method, which is approximately 38 times lower than the conventional Au sensor. Such a high-sensitivity SPR biosensor has potential in the applications of immunoassays and clinical diagnosis.
Collapse
|
4
|
Ren J, Meng X, Xiang X, Ji F, Han L, Gao X, Jia L. Tyrosine-Based Dual-Functional Interface for Trapping and On-Site Photo-Induced Covalent Immobilization of Proteins. Bioconjug Chem 2022; 33:829-838. [PMID: 35413182 DOI: 10.1021/acs.bioconjchem.2c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine, a simple and well-available natural amino acid, is featured by the small size of the compound that contains multiple reactive groups. This study developed an efficient bioconjugation strategy using tyrosine-based dual-functional interfaces. When tyrosine molecules are immobilized on the surface of a supporting material through amino groups, their carboxyl groups can function as an attracting trap due to their anionic nature at neutral pH and ability to chelate nickel(II) ions (Ni2+), allowing the capture and enrichment of cationic proteins and histidine (His)-tagged proteins on the surface. The trapped proteins can be further covalently immobilized on site through ruthenium-mediated photochemical cross-linking, which has been found to be highly efficient and can be completed within minutes. This strategy was successfully applied to two different material systems. We found that tyrosine-modified agarose beads had a binding capacity of the His-tagged enhanced green fluorescent protein comparable to that of commonly used nitrilotriacetic acid-based resins, and further covalent coupling via dityrosine cross-linking achieved a yield of 85% within 5 min, without compromising much on its fluorescence activity. On the surface of tyrosine-modified 316L stainless steel, lysozyme was captured through electrostatic interaction and further immobilized. The resultant surface exhibited remarkable antibacterial activity against both Staphylococcus aureus and Escherichia coli. Such a tyrosine-based capture-then-coupling method is featured by its simplicity, high coupling efficiency, and high utilization rate of target molecules, making it particularly suitable for the proteins that are highly priced or vulnerable to general immobilization chemistry.
Collapse
Affiliation(s)
- Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiao Meng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xu Xiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
5
|
High Sensitivity Surface Plasmon Resonance Sensor Based on Periodic Multilayer Thin Films. NANOMATERIALS 2021; 11:nano11123399. [PMID: 34947748 PMCID: PMC8703543 DOI: 10.3390/nano11123399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Surface plasmon resonance (SPR) biosensors consisting of alternate layers of silver (Ag) and TiO2 thin film have been proposed as a high sensitivity biosensor. The structure not only prevents the Ag film from oxidation, but also enhances the field inside the structure, thereby improving the performance of the sensor. Genetic algorithm (GA) was used to optimize the proposed structure and its maximum angular sensitivity was 384°/RIU (refractive index unit) at the refractive index environment of 1.3425, which is about 3.12 times that of the conventional Ag-based biosensor. A detailed discussion, based on the finite difference time domain (FDTD) method, revealed that an enhanced evanescent field at the top layer–analyte region results in the ultra-sensitivity characteristic. We expect that the proposed structure can be a suitable biosensor for chemical detection, clinical diagnostics, and biological examination.
Collapse
|
6
|
Liu L, Han C, Jiang M, Zhang T, Kang Q, Wang X, Wang P, Zhou F. Rapid and regenerable surface plasmon resonance determinations of biomarker concentration and biomolecular interaction based on tris-nitrilotriacetic acid chips. Anal Chim Acta 2021; 1170:338625. [PMID: 34090589 DOI: 10.1016/j.aca.2021.338625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
The tris-nitrilotriacetic acid (tris-NTA) chip has been used for surface plasmon resonance (SPR) kinetic studies involving histidine (His)-tagged proteins. However, its full potential, especially for analyte quantification in complex biological media, has not been realized due to a lack of systematic studies on the factors governing ligand immobilization, surface regeneration, and data analysis. We demonstrate that the tris-NTA chip not only retains His-tagged proteins more strongly than its mono-NTA counterpart, but also orients them more uniformly than protein molecules coupled to carboxymethylated dextran films. We accurately and rapidly quantified immunoglobulin (IgG) molecules in sera by using the initial association phase of their conjugation with His-tagged protein G densely immobilized onto the tris-NTA chip, and established criteria for selecting the optimal time for constructing the calibration curve. The method is highly reproducible (less than 2% RSD) and three orders of magnitude more sensitive than immunoturbidimetry. In addition, we found that the amount of His-protein immobilized is highly dependent on the protein isoelectric point (pI). Reliable kinetic data in a multi-channel SPR instrument can also be rapidly obtained by using a low density of immobilized His-tagged protein. The experimental parameters and procedures outlined in this study help expand the range of SPR applications involving His-tagged proteins.
Collapse
Affiliation(s)
- Luyao Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Meng Jiang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Tiantian Zhang
- University Hospital, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China.
| |
Collapse
|
7
|
Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:3781. [PMID: 34072572 PMCID: PMC8198293 DOI: 10.3390/s21113781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
The rapid progress in the development of surface plasmon resonance-based immunosensing platforms offers wide application possibilities in medical diagnostics as a label-free alternative to enzyme immunoassays. The early diagnosis of diseases or metabolic changes through the detection of biomarkers in body fluids requires methods characterized by a very good sensitivity and selectivity. In the case of the SPR technique, as well as other surface-sensitive detection strategies, the quality of the transducer-immunoreceptor interphase is crucial for maintaining the analytical reliability of an assay. In this work, an overview of general approaches to the design of functional SPR-immunoassays is presented. It covers both immunosensors, the design of which utilizes well-known and often commercially available substrates, as well as the latest solutions developed in-house. Various approaches employing chemical and passive binding, affinity-based antibody immobilization, and the introduction of nanomaterial-based surfaces are discussed. The essence of their influence on the improvement of the main analytical parameters of a given immunosensor is explained. Particular attention is paid to solutions compatible with the latest trends in the development of label-free immunosensors, such as platforms dedicated to real-time monitoring in a quasi-continuous mode, the use of in situ-generated receptor layers (elimination of the regeneration step), and biosensors using recombinant and labelled protein receptors.
Collapse
Affiliation(s)
- Marcin Drozd
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sylwia Karoń
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
8
|
Horta S, Qu JH, Dekimpe C, Bonnez Q, Vandenbulcke A, Tellier E, Kaplanski G, Delport F, Geukens N, Lammertyn J, Vanhoorelbeke K. Co(III)-NTA Mediated Antigen Immobilization on a Fiber Optic-SPR Biosensor for Detection of Autoantibodies in Autoimmune Diseases: Application in Immune-Mediated Thrombotic Thrombocytopenic Purpura. Anal Chem 2020; 92:13880-13887. [DOI: 10.1021/acs.analchem.0c02586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Jia-Huan Qu
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Quintijn Bonnez
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Edwige Tellier
- INSERM, INRAE, C2VN, Jardin du Pharo, Aix Marseille Univ, 58 Boulevard Charles Livon, 13007 Marseille , France
| | - Gilles Kaplanski
- INSERM, INRAE, C2VN, Jardin du Pharo, Aix Marseille Univ, 58 Boulevard Charles Livon, 13007 Marseille , France
- APHM, INSERM, INRAE, C2VN, Hôpital de la Conception, Service de médecine interne, Aix Marseille Univ, 147 Boulevard Baille, 13005 Marseille, France
| | - Filip Delport
- FOx Biosystems NV, Bioville, Agoralaan Abis, Diepenbeek 3590, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Heverlee B-3001, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
9
|
Qu JH, Horta S, Delport F, Sillen M, Geukens N, Sun DW, Vanhoorelbeke K, Declerck P, Lammertyn J, Spasic D. Expanding a Portfolio of (FO-) SPR Surface Chemistries with the Co(III)-NTA Oriented Immobilization of His 6-Tagged Bioreceptors for Applications in Complex Matrices. ACS Sens 2020; 5:960-969. [PMID: 32216277 DOI: 10.1021/acssensors.9b02227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cobalt-nitrilotriacetic acid (Co(III)-NTA) chemistry is a recognized approach for oriented patterning of His6-tagged bioreceptors. We have applied the matching strategy for the first time on a surface plasmon resonance (SPR) platform, namely, the commercialized fiber optic (FO)-SPR. To accomplish this, His6-tagged bioreceptor (scFv-33H1F7) and its target PAI-1 were used as a model system, after scrutinizing the specificity of their interaction. When benchmarked to traditional carboxyl-based self-assembled monolayers (SAM), NTA allowed (1) more efficient FO-SPR surface coverage with bioreceptors compared with the former and (2) realization of thus far difficult-to-attain label-free bioassays on the FO-SPR platform in both buffer and 20-fold diluted human plasma. Moreover, Co(III)-NTA surface proved to be compatible with traditional gold nanoparticle-mediated signal amplification in the buffer as well as in 10-fold diluted human plasma, thus expanding the dynamic detection range to low ng/mL. Both types of bioassays revealed that scFv-33H1F7 immobilized on the FO-SPR surface using different concentrations (20, 10, or 5 μg/mL) had no impact on the bioassay sensitivity, accuracy, or reproducibility despite the lowest concentration effectively resulting in close to 20% fewer bioreceptors. Collectively, these results highlight the importance of Co(III)-NTA promoting the oriented patterning of bioreceptors on the FO-SPR sensor surface for securing robust and sensitive bioassays in complex matrices, both in label-free and labeled formats.
Collapse
Affiliation(s)
- Jia-Huan Qu
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Filip Delport
- FOx Biosystems, Bioville, Agoralaan Abis, 3590 Diepenbeek, Belgium
| | - Machteld Sillen
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Nick Geukens
- PharmAbs, KU Leuven, Herestraat 49,
Box 820, B 3000 Leuven, Belgium
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, 510641 Guangzhou, China
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Paul Declerck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta 2019; 1104:10-27. [PMID: 32106939 DOI: 10.1016/j.aca.2019.12.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Abstract
Inspired by the rapid progress and existing limitations in surface plasmon resonance (SPR) biosensing technology, we have summarized the recent trends in the fields of both chip-SPR and fiber optic (FO)-SPR biosensors during the past five years, primarily regarding smart layers design, multiplexing, continuous monitoring and in vivo sensing. Versatile surface chemistries, biomaterials and nanomaterials have been utilized thus far to generate smart layers on SPR platforms and as such achieve oriented immobilization of bioreceptors, improved fouling resistance and sensitivity enhancement, collectively aiming to improve the biosensing performance. Furthermore, often driven by the desires for time- and cost-effective quantification of multiple targets in a single measurement, efforts have been made to implement multiplex bioassays on SPR platforms. While this aspect largely remains difficult to attain, numerous alternative strategies arose for obtaining parallel analysis of multiple analytes in one single device. Additionally, one of the upcoming challenges in this field will be to succeed in using SPR platforms for continuous measurements and in vivo sensing, and as such match up other biosensing platforms where these goals have been already conquered. Overall, this review will give insight into multiple possibilities that have become available over the years for boosting the performance of SPR biosensors. However, because combining them all into one optimal sensor is practically not feasible, the final application needs to be considered while designing an SPR biosensor, as this will determine the requirements of the bioassay and will thus help in selecting the essential elements from the recent progress made in SPR sensing.
Collapse
Affiliation(s)
- Jia-Huan Qu
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Annelies Dillen
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, MeBioS - Biophotonics, Kasteelpark Arenberg 30, Box 2456, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium.
| | - Dragana Spasic
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|