1
|
Wang Q, Wang Z, He Y, Xiong B, Li Y, Wang F. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Guan M, He H, Li R, Si X, Peng X, Yan X, Yang Z, Nien E, Lei Y, Luo L. Lanthanum ions assisted non-enzymatic ratiometric fluorescence probe for monitoring fenthion residues in agro-product samples. Anal Chim Acta 2022; 1236:340579. [DOI: 10.1016/j.aca.2022.340579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
3
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
5
|
Yang H, Peng Y, Xu M, Xu S, Zhou Y. Development of DNA Biosensors Based on DNAzymes and Nucleases. Crit Rev Anal Chem 2021; 53:161-176. [PMID: 34225516 DOI: 10.1080/10408347.2021.1944046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA biosensors play important roles in environmental, medical, industrial and agricultural analysis. Many DNA biosensors have been designed based on the enzyme catalytic reaction. Because of the importance of enzymes in biosensors, we present a review on this topic. In this review, the enzymes were divided into DNAzymes and nucleases according to their chemical nature. Firstly, we introduced the DNAzymes with different function inducing cleavage, metalation, peroxidase, ligation and allosterism. In this section, the G-quadruplex DNAzyme, as a hot topic in recent years, was described in detail. Then, the nucleases-assisted signal amplification method was also reviewed in three categories including exonucleases, endonucleases and other nucleases according to the digestion sites in DNA substrates. In exonucleases section, the Exo I and Exo III were selected as examples. Then, the DNase I, BamH I, nicking endonuclease, S1 nuclease, the duplex specific nuclease (DSN) and RNases were chosen to illustrate the application of endonucleases. In other nucleases section, DNA polymerases and DNA ligases were detailed. Last, the challenges and future perspectives in the field were discussed.
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Peng
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mingming Xu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shuxia Xu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China.,College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
6
|
Wei J, Wang H, Wu Q, Gong X, Ma K, Liu X, Wang F. A Smart, Autocatalytic, DNAzyme Biocircuit for in Vivo, Amplified, MicroRNA Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911712] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jie Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University 430072 Wuhan P. R. China
| | - Huimin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University 430072 Wuhan P. R. China
| | - Qiong Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University 430072 Wuhan P. R. China
| | - Xue Gong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University 430072 Wuhan P. R. China
| | - Kang Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan University 430072 Wuhan P. R. China
| |
Collapse
|
7
|
Wei J, Wang H, Wu Q, Gong X, Ma K, Liu X, Wang F. A Smart, Autocatalytic, DNAzyme Biocircuit for in Vivo, Amplified, MicroRNA Imaging. Angew Chem Int Ed Engl 2020; 59:5965-5971. [PMID: 31961985 DOI: 10.1002/anie.201911712] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/30/2019] [Indexed: 01/07/2023]
Abstract
DNAzymes have been recognized as promising transducing agents for visualizing endogenous biomarkers, but their inefficient intracellular delivery and limited amplification capacity (including insufficient cofactor supply) preclude their extensive biological application. Herein, an autocatalytic DNAzyme (ACD) biocircuit is constructed for amplified microRNA imaging in vivo based on a hybridization chain reaction (HCR) and DNAzyme biocatalysis, sustained by a honeycomb MnO2 nanosponge (hMNS). The hMNS not only delivers DNA probes, but also supplies Mn2+ as a DNAzyme cofactor and magnetic resonance imaging (MRI) agent. Through the subsequent cross-activation of HCR and DNAzyme amplicons, the ACD amplifies the limited signal resulting from miRNA recognition. The hMNS/ACD system was used to image microRNA in vivo, thus demonstrating its great promise in cancer diagnosis.
Collapse
Affiliation(s)
- Jie Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Huimin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Qiong Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Xue Gong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Kang Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| |
Collapse
|
8
|
Lee S, Jang H, Kim HY, Park HG. Three-way junction-induced isothermal amplification for nucleic acid detection. Biosens Bioelectron 2019; 147:111762. [PMID: 31654822 DOI: 10.1016/j.bios.2019.111762] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023]
Abstract
We, herein, describe a three-way junction (3WJ)-induced isothermal amplification (ThIsAmp) reaction for target nucleic acid detection. In this strategy, target nucleic acid induces the formation of 3WJ structure by associating a specially designed ThIsAmp template and ThIsAmp primer. Upon the formation of 3WJ structure, ThIsAmp primer is subjected to continuously repeated extension and nicking reaction by the combined activities of DNA polymerase and nicking endonuclease, consequently producing a large number of trigger strands. The trigger strands then initiate two separate but interconnected pathways by binding to either 3' overhang of ThIsAmp template within the 3WJ structure or free ThIsAmp template. As a consequence, a large number of final double-stranded DNA products are produced under an isothermal condition, which can be monitored in real-time by detecting the fluorescence intensity resulting from SYBR Green I staining. Based on this principle, we successfully detected target DNA down to 78.1 aM with excellent specificity. The sophisticated design principle employed in this work would provide great insight for the development of self-operative isothermal amplifying system enabling target nucleic acid detection.
Collapse
Affiliation(s)
- Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyowon Jang
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea.
| |
Collapse
|