1
|
Ma H, Guo J, Liu G, Xie D, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Wan G, Li Y, Wu D, Ma P, Guo M, Yin J. Raman spectroscopy coupled with chemometrics for identification of adulteration and fraud in muscle foods: a review. Crit Rev Food Sci Nutr 2024; 65:2008-2030. [PMID: 38523442 DOI: 10.1080/10408398.2024.2329956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Muscle foods, valued for their significant nutrient content such as high-quality protein, vitamins, and minerals, are vulnerable to adulteration and fraud, stemming from dishonest vendor practices and insufficient market oversight. Traditional analytical methods, often limited to laboratory-scale., may not effectively detect adulteration and fraud in complex applications. Raman spectroscopy (RS), encompassing techniques like Surface-enhanced RS (SERS), Dispersive RS (DRS), Fourier transform RS (FTRS), Resonance Raman spectroscopy (RRS), and Spatially offset RS (SORS) combined with chemometrics, presents a potent approach for both qualitative and quantitative analysis of muscle food adulteration. This technology is characterized by its efficiency, rapidity, and noninvasive nature. This paper systematically summarizes and comparatively analyzes RS technology principles, emphasizing its practicality and efficacy in detecting muscle food adulteration and fraud when combined with chemometrics. The paper also discusses the existing challenges and future prospects in this field, providing essential insights for reviews and scientific research in related fields.
Collapse
Affiliation(s)
- Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Electronic and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guoling Wan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Di Wu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Ping Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023; 12:2753. [PMID: 37509845 PMCID: PMC10379817 DOI: 10.3390/foods12142753] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In today's era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis.
Collapse
Affiliation(s)
- Mourad Kharbach
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Department of Computer Sciences, University of Helsinki, 00560 Helsinki, Finland
| | - Mohammed Alaoui Mansouri
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
| | - Mohammed Taabouz
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Huiwen Yu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518005, China
- Chemometrics group, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
3
|
Qu C, Li Y, Du S, Geng Y, Su M, Liu H. Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Res Int 2022; 161:111805. [DOI: 10.1016/j.foodres.2022.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
|
4
|
Lourenco A, Handschuh S, Fenelon M, Gómez-Mascaraque LG. X-ray computerized microtomography and confocal Raman microscopy as complementary techniques to conventional imaging tools for the microstructural characterization of Cheddar cheese. J Dairy Sci 2022; 105:9387-9403. [DOI: 10.3168/jds.2022-22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/17/2022] [Indexed: 11/07/2022]
|
5
|
Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Wang K, Li Z, Li J, Lin H. Raman spectroscopic techniques for nondestructive analysis of agri-foods: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Arroyo-Cerezo A, Jimenez-Carvelo AM, González-Casado A, Koidis A, Cuadros-Rodríguez L. Deep (offset) non-invasive Raman spectroscopy for the evaluation of food and beverages – A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Li X, Liu Z, Huang M, Zhu Q. Line-scan Raman scattering image and multivariate analysis for rapid and noninvasive detection of restructured beef. APPLIED OPTICS 2021; 60:6357-6365. [PMID: 34612869 DOI: 10.1364/ao.430004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The mean spectral (MS) features were extracted from Raman scattering images (RSI) of beef samples over the region of interest covering the spectral range of 789-1710cm-1 and the spatial offset range of 0-5 mm (for two sides of the incident laser). The RSI monitored the main change in the protein, amide bands, lipids, and amino acid residues. The classification model performance based on MS features compared the conventional Raman spectral features and confirmed the usefulness of RSI. Finally, the results showed that RSI technology is a reliable tool for rapid and noninvasive detection of restructured beef.
Collapse
|
9
|
Saleem M, Amin A, Irfan M. Raman spectroscopy based characterization of cow, goat and buffalo fats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:234-243. [PMID: 33505068 DOI: 10.1007/s13197-020-04535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
In this study, Raman spectroscopy has been utilized to characterize buffalo, cow and goat fat samples by using laser wavelengths at 532 and 785 nm as excitation sources. It has been observed that Raman spectra of cow fats contain beta-carotene at 1006, 1156 and 1520 cm-1, which are absent in buffalo and goat fats. The Raman bands at 1060, 1080, 1127 and 1440 cm-1 represent the saturated fatty acids, and their concentration is found relatively higher in buffalo fats than cow and goat. Similarly, the Raman band at 1650 cm-1 represent conjugated linoleic acid (CLA) which shows its relatively higher concentration in goat fats than cow and buffalo. The Raman band at 1267 cm-1 represent unsaturated fatty acids, which shows its relatively higher concentration in goat fats than cow and buffalo. The Raman bands at 838, 870 and 1060 cm-1 depict relatively higher concentration of vitamin D in buffalo fats than cow and goat. Principal component analysis has been applied to highlight the differences among three fat types which based upon the concentration of fatty acids, CLA and vitamin D.
Collapse
Affiliation(s)
- M Saleem
- Agri. & Biophotonics Division, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Lehtrar road, Nilore, Islamabad 45650 Pakistan
| | - Ayyaz Amin
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Irfan
- Agri. & Biophotonics Division, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Lehtrar road, Nilore, Islamabad 45650 Pakistan
| |
Collapse
|
10
|
Prediction of water holding capacity and pH in porcine longissimus lumborum using Raman spectroscopy. Meat Sci 2020; 172:108357. [PMID: 33130356 DOI: 10.1016/j.meatsci.2020.108357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
The main purpose of this study was to investigate if Raman spectra recorded at the exact same position as drip loss measurements could improve prediction of drip loss in pork. One ventral and one dorsal cylindrical plug, cut from a standardized slice from Longissimus lumborum, were used to determine drip loss by EZ-DripLoss method and to collect Raman spectra, while ultimate pH was measured at another location. Partial least squares regression models were developed using spectra from each plug individually or averaged spectra from both plugs. The best models used spectra from the ventral plug, resulting in rcv2=0.75, root mean square error of cross-validation (RMSECV) = 1.27% and ratio of prediction to deviation (RPD) =2.0 for EZ-DripLoss and rcv2=0.72, RMSECV = 0.05 and RPD = 2.0 for ultimate pH. Results indicate that Raman spectroscopy can be used for rough screening of drip loss and pH in pork, and that the location chosen for collection of spectra can be very important for successful predictions.
Collapse
|
11
|
Robert C, Fraser-Miller SJ, Jessep WT, Bain WE, Hicks TM, Ward JF, Craigie CR, Loeffen M, Gordon KC. Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chem 2020; 343:128441. [PMID: 33127228 DOI: 10.1016/j.foodchem.2020.128441] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
With increasing demand for fast and reliable techniques for intact meat discrimination, we explore the potential of Raman spectroscopy in combination with three chemometric techniques to discriminate beef, lamb and venison meat samples. Ninety (90) intact red meat samples were measured using Raman spectroscopy, with the acquired spectral data preprocessed using a combination of rubber-band baseline correction, Savitzky-Golay smoothing and standard normal variate transformation. PLSDA and SVM classification were utilized in building classification models for the meat discrimination, whereas PCA was used for exploratory studies. Results obtained using linear and non-linear kernel SVM models yielded sensitivities of over 87 and 90 % respectively, with the corresponding specificities above 88 % on validation against a test set. The PLSDA model yielded over 80 % accuracy in classifying each of the meat specie. PLSDA and SVM classification models in combination with Raman spectroscopy posit an effective technique for red meat discrimination.
Collapse
Affiliation(s)
- Chima Robert
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand.
| | - Sara J Fraser-Miller
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - William T Jessep
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Wendy E Bain
- AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
| | - Talia M Hicks
- Delytics Ltd, Waikato Innovation Park, Hamilton 3216, New Zealand
| | - James F Ward
- AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
| | - Cameron R Craigie
- AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
| | - Mark Loeffen
- Delytics Ltd, Waikato Innovation Park, Hamilton 3216, New Zealand
| | - Keith C Gordon
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand.
| |
Collapse
|
12
|
Zhang W, Ma J, Sun DW. Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications. Crit Rev Food Sci Nutr 2020; 61:2623-2639. [DOI: 10.1080/10408398.2020.1828814] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenyang Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
13
|
Detection of Biomarkers Relating to Quality and Differentiation of Some Commercially Significant Whole Fish Using Spatially Off-Set Raman Spectroscopy. Molecules 2020; 25:molecules25173776. [PMID: 32825151 PMCID: PMC7503569 DOI: 10.3390/molecules25173776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022] Open
Abstract
Aquaculture represents a major part of the world’s food supply. This area of food production is developing rapidly, and as such the tools and analytical techniques used to monitor and assess the quality of fish need to also develop and improve. The use of spatially off-set Raman spectroscopy (SORS) is particularly well-suited for these applications, given the ability of this technique to take subsurface measurements as well as being rapid, non-destructive and label-free compared to classical chemical analysis techniques. To explore this technique for analysing fish, SORS measurements were taken on commercially significant whole fish through the skin in different locations. The resulting spectra were of high quality with subsurface components such as lipids, carotenoids, proteins and guanine from iridophore cells clearly visible in the spectra. These spectral features were characterised and major bands identified. Chemometric analysis additionally showed that clear differences are present in spectra not only from different sections of a fish but also between different species. These results highlight the potential application for SORS analysis for rapid quality assessment and species identification in the aquaculture industry by taking through-skin measurements.
Collapse
|
14
|
Silva S, Guedes C, Rodrigues S, Teixeira A. Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review. Foods 2020; 9:E1074. [PMID: 32784641 PMCID: PMC7466308 DOI: 10.3390/foods9081074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decade, there has been a significant development in rapid, non-destructive and non-invasive techniques to evaluate carcass composition and meat quality of meat species. This article aims to review the recent technological advances of non-destructive and non-invasive techniques to provide objective data to evaluate carcass composition and quality traits of sheep and goat meat. We highlight imaging and spectroscopy techniques and practical aspects, such as accuracy, reliability, cost, portability, speed and ease of use. For the imaging techniques, recent improvements in the use of dual-energy X-ray absorptiometry, computed tomography and magnetic resonance imaging to assess sheep and goat carcass and meat quality will be addressed. Optical technologies are gaining importance for monitoring and evaluating the quality and safety of carcasses and meat and, among them, those that deserve more attention are visible and infrared reflectance spectroscopy, hyperspectral imagery and Raman spectroscopy. In this work, advances in research involving these techniques in their application to sheep and goats are presented and discussed. In recent years, there has been substantial investment and research in fast, non-destructive and easy-to-use technology to raise the standards of quality and food safety in all stages of sheep and goat meat production.
Collapse
Affiliation(s)
- Severiano Silva
- Veterinary and Animal Research Centre (CECAV) Universidade Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cristina Guedes
- Veterinary and Animal Research Centre (CECAV) Universidade Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Sandra Rodrigues
- Mountain Research Centre (CIMO), Escola Superior Agrária/Instituto Politécnico de Bragança, Campus Sta Apolónia Apt 1172, 5301-855 Bragança, Portugal; (S.R.); (A.T.)
| | - Alfredo Teixeira
- Mountain Research Centre (CIMO), Escola Superior Agrária/Instituto Politécnico de Bragança, Campus Sta Apolónia Apt 1172, 5301-855 Bragança, Portugal; (S.R.); (A.T.)
| |
Collapse
|
15
|
Kang JW, Lim SY, Galindo LH, Yoon H, Dasari RR, So PTC, Kim HM. Analysis of subcutaneous swine fat via deep Raman spectroscopy using a fiber-optic probe. Analyst 2020; 145:4421-4426. [PMID: 32441278 PMCID: PMC7329574 DOI: 10.1039/d0an00707b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since the fat content of pork is a deciding factor in meat quality grading, the use of a noninvasive subcutaneous probe for real-time in situ monitoring of the fat components is of importance to vendors and other interested parties. In this work, we developed a spectroscopic method using a fiber-optic probe for subcutaneous fat analysis that utilizes spatially offset Raman spectroscopy (SORS). Here, normalized Raman spectra were acquired as a function of spatial offset, and the relative composition of fat-to-skin was determined. We found that the Raman intensity ratio varied disproportionately depending on the fat content and that the variations of the slope were correlated to the thickness of the fat layer. Furthermore, ordinary least square (OLS) regression using two components indicated that the depth-resolved SORS spectra reflected the relative thickness of the fat layer. We concluded that the local distribution of subcutaneous fat could be measured noninvasively using a pair of fiber-optic probes.
Collapse
Affiliation(s)
- Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Soo Yeong Lim
- Department of Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Luis H. Galindo
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hongman Yoon
- Division of Convergence Technology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, 10408, Republic of Korea
| | - Ramachandra R. Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter T. C. So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyung Min Kim
- Department of Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| |
Collapse
|
16
|
A soft discriminant model based on mid-infrared spectra of bovine meat purges to detect economic motivated adulteration by the addition of non-meat ingredients. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01795-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|