1
|
Al-Shwaheen A, Aljabali AA, Alomari G, Al Zoubi M, Alshaer W, Al-Trad B, Tambuwala MM. Molecular and cellular effects of gold nanoparticles treatment in experimental diabetic myopathy. Heliyon 2022; 8:e10358. [PMID: 36060470 PMCID: PMC9437799 DOI: 10.1016/j.heliyon.2022.e10358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study aims to address the effects of gold nanoparticles (AuNPs) on diabetic myopathy in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Adult male rats were separated into three groups (n = 15): non-diabetic control (ND), diabetic (D), and diabetic treated with AuNPs (2.5 mg/kg, D + AuNPs) intraperitoneally for 4 weeks. A single injection of 50 mg/kg STZ was used to induce diabetes. RESULTS Treatment with AuNPs lowered blood glucose levels. Skeletal muscle mRNA expression of two muscle-specific E3 ubiquitin-ligases enzymes, F-box-only protein 32 (FBXO32) and muscle RING-finger protein-1 (MuRF1) were upregulated in the D group. Diabetic rats showed significant increases in the skeletal muscle expression levels of plasminogen activator inhibitor-1 (PAI-1), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and a decrease in glucose transporter 4 (GLUT4) expression. Superoxide dismutase (SOD) activity decreased and malondialdehyde (MDA) level increased in skeletal muscles of D group. Compared to the D group, expression levels of FBXO32, MuRF1, PAI-1 TNF-α, and TGF-β1 were decreased in the D + AuNPs group, and mRNA of GLUT4 increased. Furthermore, in D + AuNPs group, skeletal muscle MDA levels decreased while SOD activity increased. CONCLUSION In experimental models, AuNPs can ameliorate muscle atrophy by reducing hyperglycemia, inflammation, and oxidative stress, and by suppressing the ubiquitin-proteasome proteolytic process.
Collapse
Affiliation(s)
- Aseel Al-Shwaheen
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 211-63, Jordan
| | - Alaa A.A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ghada Alomari
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 211-63, Jordan
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 211-63, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, University of Jordan, Amman, 11942, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, 211-63, Jordan
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, County Londonderry, Ireland
| |
Collapse
|
2
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
3
|
Koushki K, Keshavarz Shahbaz S, Keshavarz M, Bezsonov EE, Sathyapalan T, Sahebkar A. Gold Nanoparticles: Multifaceted Roles in the Management of Autoimmune Disorders. Biomolecules 2021; 11:1289. [PMID: 34572503 PMCID: PMC8470500 DOI: 10.3390/biom11091289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles (GNPs) have been recently applied for various diagnostic and therapeutic purposes. The unique properties of these nanoparticles (NPs), such as relative ease of synthesis in various sizes, shapes and charges, stability, high drug-loading capacity and relative availability for modification accompanied by non-cytotoxicity and biocompatibility, make them an ideal field of research in bio-nanotechnology. Moreover, their potential to alleviate various inflammatory factors, nitrite species, and reactive oxygen production and the capacity to deliver therapeutic agents has attracted attention for further studies in inflammatory and autoimmune disorders. Furthermore, the characteristics of GNPs and surface modification can modulate their toxicity, biodistribution, biocompatibility, and effects. This review discusses in vitro and in vivo effects of GNPs and their functionalized forms in managing various autoimmune disorders (Ads) such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis.
Collapse
Affiliation(s)
- Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran;
| | - Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514763448, Iran;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU32RW, UK;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
4
|
Durand M, Lelievre E, Chateau A, Berquand A, Laurent G, Carl P, Roux S, Chazee L, Bazzi R, Eghiaian F, Jubreaux J, Ronde P, Barberi-Heyob M, Chastagner P, Devy J, Pinel S. The detrimental invasiveness of glioma cells controlled by gadolinium chelate-coated gold nanoparticles. NANOSCALE 2021; 13:9236-9251. [PMID: 33977943 DOI: 10.1039/d0nr08936b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glioblastoma are characterized by an invasive phenotype, which is thought to be responsible for recurrences and the short overall survival of patients. In the last decade, the promising potential of ultrasmall gadolinium chelate-coated gold nanoparticles (namely Au@DTDTPA(Gd)) was evidenced for image-guided radiotherapy in brain tumors. Considering the threat posed by invasiveness properties of glioma cells, we were interested in further investigating the biological effects of Au@DTDTPA(Gd) by examining their impact on GBM cell migration and invasion. In our work, exposure of U251 glioma cells to Au@DTDTPA(Gd) led to high accumulation of gold nanoparticles, that were mainly diffusely distributed in the cytoplasm of the tumor cells. Experiments pointed out a significant decrease in glioma cell invasiveness when exposed to nanoparticles. As the proteolysis activities were not directly affected by the intracytoplasmic accumulation of Au@DTDTPA(Gd), the anti-invasive effect cannot be attributed to matrix remodeling impairment. Rather, Au@DTDTPA(Gd) nanoparticles affected the intrinsic biomechanical properties of U251 glioma cells, such as cell stiffness, adhesion and generated traction forces, and significantly reduced the formation of protrusions, thus exerting an inhibitory effect on their migration capacities. Consistently, analysis of talin-1 expression and membrane expression of beta 1 integrin evoke the stabilization of focal adhesion plaques in the presence of nanoparticles. Taken together, our results highlight the interest in Au@DTDTPA(Gd) nanoparticles for the therapeutic management of astrocytic tumors, not only as a radio-enhancing agent but also by reducing the invasive potential of glioma cells.
Collapse
Affiliation(s)
- Maxime Durand
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Elodie Lelievre
- Université de Reims-Champagne-Ardennes, UMR CNRS/URCA 7369, MEDyC, F-51100 Reims, France.
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | | | - Gautier Laurent
- Université Bourgogne Franche-Comté, UMR CNRS 6213-UBFC, UTINAM, F-25000 Besançon, France
| | - Philippe Carl
- Université de Strasbourg, CNRS UMR 7021 - Strasbourg, France
| | - Stéphane Roux
- Université Bourgogne Franche-Comté, UMR CNRS 6213-UBFC, UTINAM, F-25000 Besançon, France
| | - Lise Chazee
- Université de Reims-Champagne-Ardennes, UMR CNRS/URCA 7369, MEDyC, F-51100 Reims, France.
| | - Rana Bazzi
- Université Bourgogne Franche-Comté, UMR CNRS 6213-UBFC, UTINAM, F-25000 Besançon, France
| | | | | | - Philippe Ronde
- Université de Strasbourg, CNRS UMR 7021 - Strasbourg, France
| | | | | | - Jérôme Devy
- Université de Reims-Champagne-Ardennes, UMR CNRS/URCA 7369, MEDyC, F-51100 Reims, France.
| | - Sophie Pinel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| |
Collapse
|
5
|
Differential Effects of Gold Nanoparticles and Ionizing Radiation on Cell Motility between Primary Human Colonic and Melanocytic Cells and Their Cancerous Counterparts. Int J Mol Sci 2021; 22:ijms22031418. [PMID: 33572551 PMCID: PMC7866826 DOI: 10.3390/ijms22031418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
This study examined the effects of gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the viability and motility of human primary colon epithelial (CCD841) and colorectal adenocarcinoma (SW48) cells as well as human primary epidermal melanocytes (HEM) and melanoma (MM418-C1) cells. AuNPs up to 4 mM had no effect on the viability of these cell lines. The viability of the cancer cells was ~60% following exposure to 5 Gy. Exposure to 5 Gy X-rays or 1 mM AuNPs showed the migration of the cancer cells ~85% that of untreated controls, while co-treatment with AuNPs and IR decreased migration to ~60%. In the non-cancerous cell lines gap closure was enhanced by ~15% following 1 mM AuNPs or 5 Gy treatment, while for co-treatment it was ~22% greater than that for the untreated controls. AuNPs had no effect on cell re-adhesion, while IR enhanced only the re-adhesion of the cancer cell lines but not their non-cancerous counterparts. The addition of AuNPs did not enhance cell adherence. This different reaction to AuNPs and IR in the cancer and normal cells can be attributed to radiation-induced adhesiveness and metabolic differences between tumour cells and their non-cancerous counterparts.
Collapse
|
6
|
Mulens-Arias V, Balfourier A, Nicolás-Boluda A, Carn F, Gazeau F. Endocytosis-driven gold nanoparticle fractal rearrangement in cells and its influence on photothermal conversion. NANOSCALE 2020; 12:21832-21849. [PMID: 33104150 DOI: 10.1039/d0nr05886f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular endocytosis and intracellular trafficking of nanoparticles induce dynamic rearrangements that profoundly modify the physical properties of nanoparticle and govern their biological outcomes when activated by external fields. The precise structure, organization, distribution, and density of gold nanoparticles (AuNPs) confined within intracellular compartments such as lysosomes have not been studied comprehensively, hampering the derivation of predictive models of their therapeutic activity within the cells of interest. By using transmission electron microscopy and small-angle X-ray scattering, we have determined that canonical spherical citrate-coated AuNPs in the 3-30 nm size range form fractal clusters in endolysosomes of macrophages, endothelial cells, and colon cancer cells. Statistical analysis revealed that the cluster size and endolysosome size are correlated but do not depend on the size of AuNPs unless larger preformed aggregates of AuNPs are internalized. Smaller AuNPs are confined in greater numbers in loose aggregates covering a higher fraction of the endolysosomes compared to the largest AuNPs. The fractal dimensions of intracellular clusters increased with the particle size, regardless of the cell type. We thus analyzed how these intracellular structure parameters of AuNPs affect their optical absorption and photothermal properties. We observed that a 2nd plasmon resonance band was shifted to the near-infrared region when the nanoparticle size and fractal dimensions of the intracellular cluster increased. This phenomenon of intracellular plasmon coupling is not directly correlated to the size of the intralysosomal cluster or the number of AuNPs per cluster but rather to the compacity of the cluster and the size of the individual AuNPs. The intracellular plasmon-coupling phenomenon translates to an efficient heating efficiency with the excitation of the three cell types at 808 nm, transforming the NIR-transparent canonical AuNPs with sizes below 30 nm into NIR-absorbing clusters in the tumor microenvironment. Harnessing the spontaneous clustering of spherical AuNPs by cells might be a more valuable strategy for theranostic purposes than deploying complex engineering to derive NIR-absorbent nanostructures out of their environment. Our paper sheds light on AuNP intracellular reorganization and proposes a general method to link their intracellular fates to their in situ physical properties exploited in medical applications.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Laboratoire Matière et Systèmes Complexes, UMR 7075, CNRS and Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
7
|
Le Goas M, Testard F, Taché O, Debou N, Cambien B, Carrot G, Renault JP. How Do Surface Properties of Nanoparticles Influence Their Diffusion in the Extracellular Matrix? A Model Study in Matrigel Using Polymer-Grafted Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10460-10470. [PMID: 32787032 DOI: 10.1021/acs.langmuir.0c01624] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion of nanomedicines inside the extracellular matrix (ECM) has been identified as a key factor to achieve homogeneous distribution and therefore therapeutic efficacy. Here, we sought to determine the impact of nanoparticles' (NPs) surface properties on their ability to diffuse in the ECM. As model nano-objects, we used a library of gold nanoparticles grafted with a versatile polymethacrylate corona, which enabled the surface properties to be modified. To accurately recreate the features of the native ECM, diffusion studies were carried out in a tumor-derived gel (Matrigel). We developed two methods to evaluate the diffusion ability of NPs inside this model gel: an easy-to-implement one based on optical monitoring and another one using small-angle X-ray scattering (SAXS) measurements. Both enabled the determination of the diffusion coefficients of NPs and comparison of the influence of their various surface properties, while the SAXS technique also allowed to monitor the NPs' structure as they diffused inside the gel. Positive charges and hydrophobicity were found to particularly hinder diffusion, and the different results suggested on the whole the presence of NPs-matrix interactions, therefore underlying the importance of the ECM model. The accuracy of the tumor-derived gels used in this study was evidenced by in vivo experiments involving intratumoral injections of NPs on mice, which showed that diffusion patterns in the peripheral tumor tissues were quite similar to the ones obtained within the chosen ECM model.
Collapse
Affiliation(s)
- Marine Le Goas
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fabienne Testard
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Olivier Taché
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Nabila Debou
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, Université Côte d'Azur, CEA, 06107 Nice Cedex, France
| | - Geraldine Carrot
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Philippe Renault
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
8
|
Xiao M, Shen Z, Luo W, Tan B, Meng X, Wu X, Wu S, Nie K, Tong T, Hong J, Wang X, Wang X. A new colitis therapy strategy via the target colonization of magnetic nanoparticle-internalized Roseburia intestinalis. Biomater Sci 2020; 7:4174-4185. [PMID: 31380882 DOI: 10.1039/c9bm00980a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The homeostasis process in the gut tissue of humans relies on intestinal bacteria. However, the intestine is a complex structural tissue with a huge superficial area, and thus the effective application of probiotics in the treatment of Crohn's disease (CD) is still challenging. Herein, we show the feasibility of probiotic target delivery and retention using magnetic iron oxide nanoparticle-internalized Roseburia intestinalis, which can be easily directed by a magnetic field in vitro and in vivo. Subsequently, the increased colonization of this core profitable flora not only resulted in a better therapy effect than traditional intragastric administration but also altered the bacterial composition, leading to a higher diversity in microbial taxa in rats with colitis. Our findings illustrate the exciting opportunities that nanotechnology offers for alternative strategies to modulate biological systems remotely and precisely, which represent a step towards the wireless magnetic manipulation of living biological entities in microbiology.
Collapse
Affiliation(s)
- Mengwei Xiao
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|